Research on Cryogenic Deformation Behavior and Deep Drawing Process for Complex Thin-walled Parts of 2060 Aluminum-Lithium Alloy
DONG Fei1,2, YI Youping1,2, HUANG Shiquan1,2, HE Hailin1,2
1. Research Institute of Light Alloy, Central South University, Changsha 410083; 2. State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083
DONG Fei, YI Youping, HUANG Shiquan, HE Hailin. Research on Cryogenic Deformation Behavior and Deep Drawing Process for Complex Thin-walled Parts of 2060 Aluminum-Lithium Alloy[J]. Journal of Mechanical Engineering, 2025, 61(14): 20-28.
[1] DURSUN T,SOUTIS C. Recent developments in advanced aircraft aluminium alloys[J]. Materials & Design (1980-2015),2014,56:862-871. [2] ELATY A A,XU Y,GUO X,et al. Strengthening mechanisms,deformation behavior,and anisotropic mechanical properties of Al-Li alloys:A review[J]. Journal of Advanced Research,2018,10:49-67. [3] HAJJIOUI E A,BOUCHAÂLA K,FAQIR M,et al. A review of manufacturing processes,mechanical properties and precipitations for aluminum lithium alloys used in aeronautic applications[J]. Heliyon,2023,9(3):e12565. [4] 林忠钦,黄庆学,苑世剑,等. 中国塑性成形技术和装备30年的重大突破与进展[J]. 塑性工程学报,2024,31(4):2-45. LIN Zhongqin,HUANG Qingxue,YUAN Shijian,et al. Major breakthrough and progress in metal forming technology and equipment of China in the last 30 years[J]. Journal of Plasticity Engineering,2024,31(4):2-45. [5] 常蓓,刘波,倪兴屹,等. 大型薄壁翼尖深腔整流蒙皮拉深成形技术研究[J]. 模具工业,2022,48(4):21-26. CHANG Bei,LIU Bo,NI Xingyi,et al. Study on drawing technology of deep cavity rectifier skin in large thin-walled wingtip[J]. Die & Mould Industry,2022,48(4):21-26. [6] SINGH C,AGNIHOTRI G. Study of deep drawing process parameters:A review[J]. International Journal of Scientific and Research Publications,2015,5(2):1-15. [7] HU Z,FAN C,ZHENG D,et al. Microstructure evolution of Al-Cu-Mg alloy during rapid cold punching and recrystallization annealing[J]. Transactions of Nonferrous Metals Society of China,2019,29(9):1816-1823. [8] GUMBMANN E,GEUSER F D,SIGLI C,et al. Influence of Mg,Ag and Zn minor solute additions on the precipitation kinetics and strengthening of an Al-Cu-Li alloy[J]. Acta Materialia,2017,133:172-185. [9] 谢冰鑫,黄亮,徐佳辉,等. 2195铝锂合金时效析出行为与强化机理[J]. 中国有色金属学报,2022,32(8):2160-2172. XIE Bingxin,HUANG Liang,XU Jiahui,et al. Aging precipitation behavior and strengthening mechanism of 2195 Al-Li alloy[J]. The Chinese Journal of Nonferrous Metals,2022,32(8):2160-2172. [10] 王硕,张弛,王俊升. 铝锂合金纳米析出相结构与性能综述[J]. 航空制造技术,2021,64(9):68-76,92. WANG Shuo,ZHANG Chi,WANG Junsheng. Structures and properties of nano-precipitates in Al-Li alloys[J]. Aeronautical Manufacturing Technology,2021,64(9):68-76,92. [11] 郑皓,杨健,寇飞行. 铝锂合金薄板在国内航空领域的工程化应用与展望[J]. 中国材料进展,2025,44(2):193-198. ZHENG Hao,YANG Jian,KOU Feixing. Engineering application and prospect of Aluminum-lithium alloy sheet in domestic aviation field[J]. Materials China,2025,44(2):193-198. [12] 李国爱,王亮,郝敏,等. 2060铝锂合金薄板组织特征及疲劳损伤行为[J]. 西北工业大学学报,2020,38(2):384-391. LI Guoai,WANG Liang,HAO Min,et al. Microstructure characteristic and fatigue damage behaviors of 2060 Al-Li alloy thin plate[J]. Journal of Northwestern Polytechnical University,2020,38(2):384-391. [13] WANG P,YE L,DENG Y,et al. Enhanced fatigue crack propagation resistance of a new Al-Cu-Li alloy via different aging processes[J]. Journal of Materials Research and Technology,2024,30:5368-5380. [14] LU D,NING H,DENG S,et al. Influence of microstructure on fatigue crack propagation behaviors of Al-xCu-1.5 Li-X alloys[J]. International Journal of Fatigue,2023,167:107363. [15] XIA L,LI Y,HUANG M,et al. Enhanced fatigue crack propagation resistance of Al-4.1 Cu-1.1 Li alloy by interrupted aging[J]. Journal of Materials Science,2022,57(11):6372-6384. [16] 刘伟,程旺军,郝永刚,等. 铝合金超低温双增效应与成形性能[J]. 中国有色金属学报,2022,32(7):1845-1854. LIU Wei,CHENG Wangjun,HAO Yonggang,et al. Dual enhancement effect and formability of aluminum alloys at cryogenic temperatures[J]. The Chinese Journal of Nonferrous Metals,2022,32(7):1845-1854. [17] ZHOU P,SONG Y,HUA L,et al. Mechanical behavior and deformation mechanism of 7075 aluminum alloy under solution induced dynamic strain aging[J]. Materials Science and Engineering:A,2019,759:498-505. [18] ANJABIN N,TAHERI A,KIM H. Simulation and experimental analyses of dynamic strain aging of a supersaturated age hardenable aluminum alloy[J]. Materials Science and Engineering:A,2013,585:165-173. [19] PICU R C,VINCZE G,OZTURK F,et al. Strain rate sensitivity of the commercial aluminum alloy AA5182-O[J]. Materials Science and Engineering:A,2005,390(1-2):334-343. [20] CHEN H,CHEN Z,LIU J,et al. Constitutive modeling of flow stress and work hardening behavior while considering dynamic strain aging[J]. Materialia,2021,18:101137. [21] DE K N E,PEERLINGS R H J,GEERS M G D. An analysis of sheet necking under combined stretching and bending[J]. International Journal of Material Forming,2009,2:845-848. [22] DONG F,HUANG S,YI Y,et al. Effect of increased stretching deformation at cryogenic temperature on the precipitation behavior and mechanical properties of 2060 Al-Li alloy[J]. Materials Science and Engineering:A,2022,834:142585.