[1] 徐佳辉,黄亮,谢冰鑫,等. 铝锂合金电磁形变复合热处理工艺研究[J]. 机械工程学报,2022,58(16):58-67. XU Jiahui, HUANG Liang, XIE Bingxin,et al. Study on electromagnetic deformation combined with heat treatment process of Al-Li alloy[J]. Journal of Mechanical Engineering,2022,58(16):58-67. [2] 李飘,姚卫星. 铝锂合金材料发展及综合性能评述[J].航空工程进展,2019,10(1):12-20. LI Piao,YAO Weixing. Review on the development and comprehensive properties of Al-Li alloy materials[J]. Advances in Aeronautical Science and Engineering,2019,10(1):12-20. [3] DI Z,SAJI S,HORI S. Effect of microstructure on high cycle fatigue behaviour of AL-Li binary alloy[J]. Le Journal de Physique Colloques,1987,48(3):753-759. [4] ALEXOPOULOS N D,MIGKLIS E,STYLIANOS A,et al. Fatigue behavior of the aeronautical Al-Li(2198) aluminum alloy under constant amplitude loading[J]. International Journal of Fatigue,2013,56:95-105. [5] 艾素华,吴细毛,张匀. S'和T2相对8090铝锂合金低周疲劳行为的影响[J]. 机械工程材料,1998,22(2):6-9. AI Suhua,WU Ximao,ZHANG Yun. Effected of precipitated phase S' and T2 on the low cycle fatigue behaviour of 8090 Al-Li alloy[J]. Materials for Mechanical Engineering,1998,22(2):6-9. [6] 郝敏,王亮,陈军洲,等. 2060-T8E30铝锂合金平面各向异性和断裂破坏机制研究[J]. 稀有金属,2021,45(6):641-649. HAO Min,WANG Liang,CHEN Junzhou,et al. Research on 2060-T8E30 Aluminum-Lithium alloy plane anisotropy and fracture failure mechanism[J]. Chinese Journal of Rare Metals,2021,45(6):641-649. [7] 张雪洋,钟振东,潘雪纯,等. 划痕损伤对含铆钉孔2198-T8铝锂合金疲劳性能的影响[J]. 塑性工程学报,2022,29(9):199-206. ZHANG Xueyang,ZHONG Zhendong,PAN Xuechun,et al. Effect of scratch damage on fatigue performance of 2198-T8 aluminum-lithium alloy with rivet holes[J].Journal of Plasticity Engineering,2022,29(9):199-206. [8] 杨文平,郭杏林,赵延广. 对流和辐射换热对金属高周疲劳能量耗散估计的影响[J]. 机械工程学报,2021,57(10):187-195. YANG Wenping,GUO Xinglin,ZHAO Yanguang. Effects of convection and radiation heat transfer on energy dissipation estimation of metal in high-cycle fatigue[J]. Journal of Mechanical Engineering,2021,57(10):187-195. [9] RAMACHANDRA S,DURODOLA J F,FELLOWS N A,et al. Experimental validation of an ANN model for random loading fatigue analysis[J]. International Journal of Fatigue,2019,126:112-121. [10] FENG C,XU L Y,ZHAO L,et al. Prediction of welded joint fatigue properties based on a novel hybrid SPDTRS-CS-ANN method[J]. Engineering Fracture Mechanics,2022,275:108824. [11] BRITO O G A,FREIRE J R C S,CONTE M V L A,et al. A hybrid ANN-multiaxial fatigue nonlocal model to estimate fretting fatigue life for aeronautical Al alloys[J]. International Journal of Fatigue,2022,162:107011. [12] ZHANG X,GONG J G,XUAN F Z. A deep learning based life prediction method for components under creep, fatigue and creep-fatigue conditions[J]. International Journal of Fatigue,2021,148:106236. [13] YANG Jingye,KANG Guozheng,LIU Yujie,et al. A novel method of multiaxial fatigue life prediction based on deep learning[J]. International Journal of Fatigue,2021,151:106356. [14] 王刚,高琛,王书艳,等. 频率及应力比对18CrNiMo7-6合金钢疲劳性能的影响[J]. 热加工工艺,2022,51(2):51-55. WANG Gang,GAO Chen,WANG Shuyan,et al. Effects of frequency and stress ratio on fatigue performance of 18CrNiMo7-6 alloy steel[J]. Hot Working Technology,2022,51(2):51-55. [15] MANNO A,MARTELLI E,AMALDI E. A shallow neural network approach for the short-term forecast of hourly energy consumption[J]. Energies,2022,15:958. [16] XIAO Z,YE S J,ZHONG B,et al. BP neural network with rough set for short term load forecasting[J]. Expert Systems with Applications,2009,36(1):273-279. [17] ZHAO Dewang,ZHAO Kunmin,REN Daxin,et al. Ultrasonic welding of magnesium-titanium dissimilar metals:A study on influences of welding parameters on mechanical property by experimentation and artificial neural network[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME,2017,139(3):031019. [18] ZHAO Dewang,REN Daxin,ZHAO Kunmin,et al. Effect of welding parameters on tensile strength of ultrasonic spot welded joints of aluminum to steel-By experimentation and artificial neural network[J]. Journal of Manufacturing Processes,2017,30(12):63-74. [19] ZHAO Dewang,REN Daxin,SONG Gang,et al. Comparison of mechanical properties and the nugget formation of composite ceramic-centered annular welding and traditional resistance spot welding[J]. International Journal of Mechanical Sciences,2020,187(5):105933. [20] GERS F A,SCHMIDHUBER E. LSTM recurrent networks learn simple context-free and context-sensitive languages[J]. IEEE Transactions on Neural Networks,2001,12(6):1333-1340. |