[1] 田宗军,顾冬冬,沈理达,等.激光增材制造技术在航空航天领域的应用与发展[J].航空制造技术,2015,480(11):38-42.TIAN Zongjun,GU Dongdong,SHEN Lida,et al.Application and development of laser additive manufacturing technology in aerospace field[J].Aeronautical Manufacturing Technology,2015,480(11):38-42. [2] 徐爱国.增材制造技术在航空航天领域的应用[J].国际太空,2016(10):67-72.XU Aiguo.Application of additive manufacturing technology in aerospace[J].International Space Journal,2016(10):67-72. [3] 冯志高,关成启,张红文.高超声速飞行器概论[M].北京:北京理工大学出版社,2016:10-20.FENG Zhigao,GUAN Chengqi,ZHANG Hongwen.Introduction to hypersonic aircraft[M].Beijing:Beijing Institute of Technology Press,2016. [4] NAJMON J C,RAEISI S,TOVAR A.Review of additive manufacturing technologies and applications in the aerospace industry[J].Additive manufacturing for the aerospace industry,2019:7-31. [5] VAFADAR A,GUZZOMI F,RASSAU A,et al.Advances in metal additive manufacturing:A review of common processes,industrial applications,and current challenges[J].Applied Sciences,2021,11(3):1213. [6] MENG L,ZHANG W,QUAN D,et al.From topology optimization design to additive manufacturing:Today's success and tomorrow's roadmap[J].Archives of Computational Methods in Engineering,2020,27(3):805-830. [7] 唐绍锋,张静.世界主要空天飞行器研制情况及未来发展趋势[J].国际太空,2017(10):30-37.TANG Shaofeng,ZHANG Jing.Development and future development trend of major aerospace vehicles in the world[J].International Space,2017(10):30-37. [8] 魏毅寅.组合动力空天飞行若干科技关键问题[J].空天技术,2022(1):1-12.WEI Yiyin.Some key scientific and technological issues of combined power space flight[J].Aerospace Technology,2022(1):1-12. [9] 王长青.空天飞行技术创新与发展展望[J].宇航学报,2021,42(7):807-819.WANG Changqing.Technological innovation and development prospect of aerospace vehicle[J].Journal of Astronautics,2021,42(7):807-819. [10] 唐硕,龚春林,陈兵.组合动力空天飞行器关键技术[J].宇航学报,2019,40(10):1103-1114.TANG Shuo,GONG Chunlin,CHEN Bing.Key technologies of combined power space vehicles[J].Journal of Astronautics,2019,40(10):1103-1114. [11] 龙乐豪,王国庆,吴胜宝,等.我国重复使用航天运输系统发展现状及展望[J].国际太空,2019(9):4-10.LONG Lehao,WANG Guoqing,WU Shengbao,et al.Development status and prospect of reusable space transportation system in China[J].International Space,2019(9):4-10. [12] HUANG S H,LIU P,MOKASDAR A,et al.Additive manufacturing and its societal impact:A literature review[J].The International Journal of Advanced Manufacturing Technology,2013,67(5):1191-1203. [13] ABDULHAMEED O,AL-AHMARI A,AMEEN W,et al.Additive manufacturing:Challenges,trends,and applications[J].Advances in Mechanical Engineering,2019,11(2):1-16. [14] 英美德中四国先进制造业战略--厦门人大网/中国经济网[EB/OL].[2018-10-17]. https://www.xmrd.gov.cn/rdlz/tszs/201810/t20181017_5225128.htm. Advanced manufacturing Strategy of Britain,the United States,Germany and China--Xiamen People's Congress/China Economic Network[EB/OL].[2018-10-17]. https://www.xmrd.gov.cn/rdlz/tszs/201810/t20181017_5225128.htm. [15] KHORASANI M,LOY J,GHASEMI A H,et al.A review of industry 4.0 and additive manufacturing synergy[J].Rapid Prototyping Journal,2022,28(8):1462-1475. [16] MAGISETTY R P,CHEEKURAMELLI N S.Additive manufacturing technology empowered complex electromechanical energy conversion devices and transformers[J].Applied Materials Today,2019,14:35-50. [17] LI Y,FENG Z,HAO L,et al.A review on functionally graded materials and structures via additive manufacturing:From multi‐scale design to versatile functional properties[J].Advanced Materials Technologies,2020,5(6):1900981. [18] 田小永.纤维增强树脂基复合材料增材制造技术[M].北京:国防工业出版社,2021.TIAN Xiaoyong.Additive manufacturing technology of fiber-reinforced resin matrix composites[M].Beijing:National Defense Industry Press,2021. [19] ZAQ A,EE A,AK B,et al.Heat transfer performance of a finned metal foam-phase change material (FMF-PCM) system incorporating triply periodic minimal surfaces (TPMS)[J].International Journal of Heat and Mass Transfer,2021,170:121001. [20] TOMLIN M,MEYER J.Topology optimization of an additive layer manufactured (ALM) aerospace part[C]//Proceeding of the 7th Altair CAE technology conference,2011:1-9. [21] JUDSON J.Orbital ATK tests partially 3D printed warhead for hypersonic weapons[EB/OL].[2018-11-27]. https://www.defensenews.com/land/2018/04/09/orbital-atk-tests-partially-3d-printed-warhead-for-hypersonicweapons/#.WsuHqRER-Uc.twitter [22] JAY Clemens.Tom bussing:Raytheon eyes 3D printing to increase weapon sizes.[EB/OL].[2016-03-31]. https://blog.executivebiz.com/2016/03/tom-bussing-raytheon-eyes-3d-printing-to-increase-weapon-sizes/. [23] CLINTON Jr R G.NASA marshall space flight center additive manufacturing:Rocket engines and in space manufacturing[C]//International Symposium on Additive Manufacturing (ISAM)2017:38747. [24] KUMAR L J,KRISHNADAS Nair C G.Current trends of additive manufacturing in the aerospace industry[M].Singapore:Springer,2017. [25] LIU R,WANG Z,SPARKS T,et al.Aerospace applications of laser additive manufacturing[M].Cambridge:Woodhead publishing,2017. [26] BLAKEY-MILNER B,GRADL P,SNEDDEN G,et al.Metal additive manufacturing in aerospace:A review[J].Materials&Design,2021,209:110008. [27] MADHAVADAS V,SRIVASTAVA D,CHADHA U,et al.A review on metal additive manufacturing for intricately shaped aerospace components[J].CIRP Journal of Manufacturing Science and Technology,2022,39:18-36. [28] KHORASANI M,GHASEMI A H,ROLFE B,et al.Additive manufacturing a powerful tool for the aerospace industry[J].Rapid Prototyping Journal,2022,28(1):87-100. [29] PAEK S W,BALASUBRAMANIAN S,STUPPLES D.Composites additive manufacturing for space applications:A Review[J].Materials,2022,15(13):4709. [30] 卢秉恒,李涤尘.增材制造(3D打印)技术发展[J].机械制造与自动化,2013,42(4):1-4.LU Bingheng,LI Dichen.Additive manufacturing (3D printing) technology development[J].China Machine Manufacturing and Automation,2013,42(4):1-4. [31] 顾冬冬,张红梅,陈洪宇,等.航空航天高性能金属材料构件激光增材制造[J].中国激光,2020,47(5):32-35.GU Dongdong,ZHANG Hongmei,CHEN Hongyu,et al.Laser additive manufacturing of aerospace high-performance metal material components[J].Chinese Journal of Lasers,2020,47(5):32-35. [32] 汤海波,吴宇,张述泉,等.高性能大型金属构件激光增材制造技术研究现状与发展趋势[J].精密成形工程,2019,11(4):58-63.TANG Haibo,WU Yu,ZHANG Shuquan,et al.Research status and development trend of laser additive manufacturing technology for high-performance large metal components[J].Precision Forming Engineering,2019,11(4):58-63. [33] DEATON J,GRANDHI R.A survey of structural and multidisciplinary continuum topology optimization:Post 2000[J].Structural and Multidisciplinary Optimization,2014,49:1-38. [34] DUYSINX P,BENDSØE M P.Topology optimization of continuum structures with local stress constraints[J].International Journal for Numerical Methods in Engineering,1998,43:1453-1478. [35] DUYSINX P,COLLET M,BAUDUIN S.Stress constrained topology optimization for additive manufacturing:Specific character and solution aspects[C]//ESMC2015:9th European Solid Mechanics Conference,2015. [36] 王向明,苏亚东,吴斌.增材技术在飞机结构研制中的应用[J].航空制造技术,2014,57(22):16-20.WANG Xiangming,SU Yadong,WU Bin.Application of additive technology in aircraft structure development[J].Aeronautical Manufacturing Technology,2014,57(22):16-20. [37] 刘书田,李取浩,陈文炯,等.拓扑优化与增材制造结合:一种设计与制造一体化方法[J].航空制造技术,2017,60(10):26-31.LIU Shutian,LI Quhao,CHEN Wenjiong,et al.Topology optimization and additive manufacturing combination:An integrated design and manufacturing method[J].Aeronautical Manufacturing Technology,2017,60(10):26-31. [38] 王向明,崔灿,苏亚东,等.飞机高能束增材制造结构研究[J].航空制造技术,2017,60(10):16-21.WANG Xiangming,CUI Can,SU Yadong,et al.Study on additive manufacturing structure of high energy beam for aircraft[J].Aeronautical Manufacturing Technology,2017,60(10):16-21. [39] 方岱宁,张一慧,崔晓东.轻质点阵材料力学与多功能设计[M].北京:化学工业出版社,2009.FANG Daining,ZHANG Yihui,CUI Xiaodong.Lightweight lattice material mechanics and multifunctional design[M].Beijing:Chemical Industry Press,2009. [40] ZHOU H,CAO X,LI C,et al.Design of self-supporting lattices for additive manufacturing[J].Journal of the Mechanics and Physics of Solids,2021,148:104298. [41] 张龙,李昂,赵云鹏,等.一种全封闭蒙皮点阵支撑结构的优化设计与试验验证[J].机械工程学报,2021,57(22):35-42.ZHANG Long,LI Ang,ZHAO Yunpeng,et al.Optimization design and experimental verification of a fully enclosed skin lattice support structure[J].Journal of Mechanical Engineering,2021,57(22):35-42. [42] CHRIS K,ANDREW N,MURAT T.Free flight testing in hypersonic flows:Hexafly-int eftv[C]//54th AIAA Aerospace Sciences Meeting,California,2016. [43] 张百成,张文龙,曲选辉.基于高通量制备的增材制造材料成分设计[J].金属学报,2023,59(1):78-56.ZHANG Baicheng,ZHANG Wenlong,QU Xuanhui.Composition design of additive manufacturing materials based on high throughput preparation[J].Acta Metallurgica Sinica,2023,59(1):78-56. [44] 耿鹏,陈道兵,周燕,等.增材制造智能材料研究现状及展望[J].材料工程,2022,50(6):12-26.GENG Peng,CHEN Daobing,ZHOU Yan,et al.Research status and prospect oladditive manufacturing ofintelligent materials[J].Journal of Materials Engineering,2022,50(6):12-26. [45] 丁晓红,张横,沈洪.高速飞行器结构优化及增材制造研究进展[J].空天防御,2023,6(2):1-11.DING Xiaohong,ZHANG Heng,SHEN Hong.Research progress of structural optimization and additive manufacturing on high-speed aircraft structures[J].Air&Space Defense,2023,6(2):1-11. [46] 张啸雨,刘畅,施丽铭,等.蒙皮点阵一体化支撑结构的移动可变形组件优化设计及空间站应用[J].固体力学学报,2022,43(5):551-563.ZHANG Xiaoyu,LIU Chang,SHI Liming,et al.Optimal design of shel-lattice infill integrated supporting structure based on the method of moving morphable componentsand its application in china space station[J].Chinese Journal of Solid Mechanics,2022,43(5):551-563. [47] XU Kaikai,GONG Yadong,ZHAO Qiang.Comparison of traditional processing and additive manufacturing technologies in various performance aspects:A review[J].Archives of Civil and Mechanical Engineering,2023,23(3):188. [48] 卢秉恒,侯颖,张建勋.增材制造国家标准体系建设与发展规划[J].金属加工(冷加工),2022(4):1-4.LU Bingheng,HOU Ying,ZHANG Jianxun.Construction and development planning of national standard system for additive manufacturing[J].Metal Processing (Cold Working),2022(4):1-4. [49] 薛莲,肖承翔,李海斌,等.增材制造标准体系研究[J].标准科学,2017,522(11):52-55.XUE Lian,XIAO Chengxiang,LI Haibin,et al.Study on additive manufacturing standards system[J].Standard Science,2017,522(11):52-55. [50] 栗晓飞.国外增材制造标准分类与解析[J].电加工与模具,2020(5):56-59.LI Xiaofei.Classification and analysis of foreign additive manufacturing standards[J].Electrical Processing and Molding,2020(5):56-59. |