[1] 武湛君,渠晓溪,高东岳,等.航空航天复合材料结构健康监测技术研究进展[J].航空制造技术,2016(15):92-102. WU Zhanjun,QU Xiaoxi,GAO Dongyue,et al. Research progress of structural health monitoring technology for aerospace composite materials[J]. Aerospace Manufact-uring Technology,2016(15):92-102. [2] 卿新林,王奕首,赵琳.结构健康监测技术及其在航空航天领域中的应用[J].实验力学,2012,27(5):517-526. QING Xinlin,WANG Yishou,ZHAO Lin. Structural health monitoring technology and its application in aerospace field[J]. Experimental Mechanics,2012,27(5):517-526. [3] GLISIC B,INAUDI D. Development of method for in-service crack detection based on distributed fiber optic sensors[J]. Structural Health Monitoring,2011,11(2):161-171. [4] 吕睿.基于分布式光纤的飞行器典型构件多参量识别[D].大连:大连理工大学,2019. LU Rui. Multi parameter identification of typical aircraft components based on distributed optical fiber[D]. Dalian:Dalian University of Technology,2019. [5] 单一男,武湛君,徐新生,等.基于分布式光纤传感的隔热层脱粘识别研究[J].压电与声光,2020,42(1):25-28. SHAN Yinan,WU Zhanjun,XU Xinsheng,et al. Research on debonding recognition of thermal insulation layer based on distributed optical fiber sensing[J]. Piezoelectric and Acousto Optic,2020,42(1):25-28. [6] 雷亚国,贾峰,周昕,等.基于深度学习理论的机械装备大数据健康监测方法[J].机械工程学报,2015,51(21):49-56. LEI Yaguo,JIA Feng,ZHOU Xin,et al. Health monitoring method of mechanical equipment big data based on deep learning theory[J]. Journal of Mechanical Engineering,2015,51(21):49-56. [7] CANTERO-CHINCHILLA S,CHIACHÍO J,CHIACHÍO M,et al. A robust Bayesian methodology for damage localization in plate-like structures using ultrasonic guided-waves[J]. Mechanical Systems and Signal Processing,2019,122(1):192-205. [8] VAKIL-BAGHMISHEH M-T,PEIMANI M,SADEGHI M H,et al. Crack detection in beam-like structures using genetic algorithms[J]. Applied Soft Computing,2008,8(2):1150-1160. [9] 孙宗光,高赞明,倪一清.基于神经网络的桥梁损伤位置识别[J].工程力学,2004,21(1):42-47. SUN Zongguang,GAO Zanming,NI Yiqing. Identification of bridge damage location based on neural network[J]. Engineering Mechanics,2004,21(1):42-47. [10] ABDELJABER O,AVCI O,KIRANYAZ M S,et al. 1-D CNNs for structural damage detection:Verification on a structural health monitoring benchmark data[J]. Neurocomputing,2017,275:1308-1317. [11] JANG K Y,KIM B,CHO S,et al. Deep learning-based concrete crack detection using hybrid images[C/CD]//Sensors and Smart Structures Technologies for Civil,Mechanical,and Aerospace Systems,2018. [12] LECUN Y,BENGIO Y,HINTON G. Deep learning[J]. Nature,2015,521(7553):436-444. [13] LIU T,XU H,RAGULSKIS M,et al. A data-driven damage identification framework based on transmissibility function datasets and one-dimensional convolutional neural networks:Verification on a structural health monitoring benchmark structure[J]. Sensors,2020,20(4):1059-1084. [14] SONG Q,ZHANG C,TANG G,et al. Deep learning method for detection of structural microcracks by Brillouin scattering based distributed optical fiber sensors[J]. Smart Materials and Structures,2020,29(7):075008-075020. [15] LECUN Y,BOTTOU L,BENGIO Y,et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE,1998,86(11):2278-2324. [16] FROGGATT M,MOORE J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter[J]. Applied Optics,1998,37(10):1735-1740. |