[1] 薛培林, 吴愿, 殷国栋, 等.基于信息融合的城市自主车辆实时目标识别[J].机械工程学报, 2020, 56(12):165-173.XUE Peilin, WU Yuan, YIN Guodong, et al.Real-time target recognition of urban autonomous vehicles based on information fusion[J].Chinese Journal of Mechanical Engineering, 2020, 56(12):165-173. [2] 彭育辉, 郑玮鸿, 张剑锋.基于深度学习的道路障碍物检测方法[J].计算机应用, 2020, 40(8):2428-2433.PENG Yuhui, ZHENG Weihong, ZHANG Jianfeng.Road obstacle detection method based on deep learning[J].Journal of Computer Applications, 2020, 40(8):2428-2433. [3] WANG D L, POSNER I.Voting for voting in online point cloud object detection[C]//Robotics:Science and Systems Xi, Sapienza Univ Rome:MIT PRESS, 2015:13-22. [4] ZHOU Yin, TUZEL O.VoxelNet:end-to-end learning for point cloud based 3D object detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Salt Lake City UT:IEEE Comp Soc, 2018:4490-4499. [5] YAN Yan, MAO Yuxing, LI Bo.SECOND:Sparsely embedded convolutional detection[J].Sensors, 2018, 18(10):3337-3354. [6] KUANG Hongwu, WANG Bei, AN Jianping, et al.Voxel-FPN:Multi-scale voxel feature aggregation for 3d object detection from lidar point clouds[J].Sensors, 2020, 20(3):704-723. [7] ENGELCKE M, RAO D, ZENG D, et al.Vote3Deep:fast object detection in 3d point clouds using efficient convolutional neural ntworks[C]//2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore:IEEE, 2017:1355-1361. [8] LI B.3D fully convolutional network for vehicle detection in point cloud[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), Vancouver:IEEE, 2017:1513-1518. [9] QI C R, SU Hao, MO Kaichun, et al.PointNet:Deep learning on point sets for 3d classification and segmentation[C]//30th IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu:IEEE, 2017:77-85. [10] QI C R, YI Li, SU Hao, et al.PointNet plus plus:Deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of Advances in Neural Information Processing Systems 30, Long Beach CA:NIPS, 2017:5099-5108. [11] LI Yangyan, BU Rui, SUN Mingchao, et al.PointCNN:Convolution on x-transformed points[C]//Proceedings of Advances in Neural Information Processing Systems 31, Montreal:NIPS, 2018:820-830. [12] DENG Haowen, BIRDAL T, IlIE S, et al.PPFNet:Global context aware local features for robust 3D point matching[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Salt Lake City UT:IEEE, 2018:195-205. [13] MEYER G P, LADDHA A, KEE E, et al.LaserNet:An efficient probabilistic 3D object detector for autonomous driving[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Long Beach CA:IEEE, 2019:12669-12678. [14] YANG Zetong, SUN Yanan, LIU Shu, et al.3DSSD:point-based 3D single stage object detector[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Seattle:IEEE, 2020:arXiv:2002.10187. [15] LI Bo, ZHANG Tianlei, XIA Tian.Vehicle detection from 3 D lidar using fully convolutional network[C]//Proceedings of Robotics:Science and Systems (RSS), Ann Arbor:MIT PRESS, 2016:42-50. [16] CHEN Xiaozhi, MA Huimin, WAN Ji, et al.Multi-view 3 D object detection network for autonomous driving[C]//30th IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu:IEEE, 2017:6526-6534. [17] KU J, MOZIFIAN M, LEE J, et al.Joint 3d proposal generation and object detection from view aggregation[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), Madrid:IEEE, 2018:5750-5757. [18] QI C R, LIU Wei, WU Chenxia, et al.Frustum pointnets for 3D object detection from RGB-D data[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Salt Lake City UT:IEEE, 2018:918-927. [19] WANG Zhixin, JIA Kui.Frustum convNet:sliding frustums to aggregate local point-wise features for amodal 3D object detection[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau:IEEE, 2019:1742-1749. [20] LIANG Ming, YANG Bin, CHEN Yun, et al.Multi-task multi-sensor fusion for 3D object detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach CA:IEEE, 2019:7337-7345. [21] LIANG Ming, YANG Bin, WANG Shenlong, et al.Deep continuous fusion for multi-sensor 3D object detection[C]//15th European Conference on Computer Vision (ECCV), Munich:Springer-Verlag Berlin, 2018:663-678. [22] REN Shaoqing, HE Kaiming, GIRSHICK R, et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence(TPAMI), 2016, 36(6):1137-1149. [23] LIN T Y, DOLLAR P, GIRSHICK R, et al.Feature pyramid networks for object detection[C]//30th IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu:IEEE, 2017:936-944. [24] WOO S, PARK J, LEE J Y, et al.CBAM:Convolutional block attention module[C]//15th European Conference on Computer Vision (ECCV), Munich:SPRINGER-VERLAG BERLIN, 2018:3-19. [25] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[C]//Proceedings of Advances in Neural Information Processing Systems 30, Long Beach CA:NIPS, 2017:1049-1064. [26] GEIGER A, LENZ P, STILLER C, et al.Vision meets robotics:The kitti dataset[J].International Journal of Robotics Research, 2013, 32(11):1231-1237. [27] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al.Spatial transformer networks[C]//Proceedings of Advances in Neural Information Processing Systems 28, Montreal:NIPS, 2015:2017-2025. [28] XU Danfei, ANGUELOV D, JAIN A.PointFusion:deep sensor fusion for 3d bounding box estimation[C]//31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City UT:IEEE, 2018:244-253. [29] ZENG Yiming, HU Yu, LIU Shice, et al.RT3D:Real-time 3D vehicle detection in lidar point cloud for autonomous driving[J].IEEE Robotics And Automation Letters, 2018, 3(4):3434-3440. |