[1] 魏明明, 傅卫平, 蒋家婷, 等. 操作机器人轴孔装配的行为动力学控制策略[J]. 机械工程学报, 2015, 51(5):14-21. WEI Mingming, FU Weiping, JIANG Jiating, et al. Dynamics of behavior control strategy in peg-in-hole assembly task of manipulator[J]. Journal of Mechanical Engineering, 2015, 51(5):14-21. [2] 常健, 王亚珍, 李斌. 基于力/位混合算法的7自由度机械臂精细操控方法[J]. 机器人, 2016, 38(5):531-539. CHANG Jian, WANG Yazhen, LI Bin. Accurate operation control method based on hybrid force/position algorithm for 7-DOF manipulator[J]. Robot, 2016, 38(5):531-539. [3] CHAUDHARY H, PANWAR V, PRASAD R, et al. Adaptive neuro fuzzy based hybrid force/position control for an industrial robot manipulator[J]. Journal of Intelligent Manufacturing, 2016, 27(6):1299-1308. [4] 吴炳龙, 曲道奎, 徐方. 基于力/位混合控制的工业机器人精密轴孔装配[J]. 浙江大学学报, 2018, 52(2):379-386. WU Binglong, QU Daokui, XU Fang. Industrial robot high precision peg-in-hole assembly based on hybrid force/position control[J]. Journal of Zhejiang University, 2018, 52(2):379-386. [5] 甘亚辉, 段晋军, 戴先中. 非结构环境下的机器人自适应变阻抗力跟踪控制方法[J]. 控制与决策, 2019, 34(10):2134-2142. GAN Yahui, DUAN Jinjun, DAI Xianzhong. Adaptive variable impedance control for robot force tracking in unstructured environment[J]. Control and Decision, 2019, 34(10):2134-2142. [6] 董悫, 张立建, 易旺民, 等. 基于动力学前馈的空间机器人多销孔装配力柔顺控制[J]. 机械工程学报, 2019, 55(4):207-217. DONG Que, ZHANG Lijian, YI Wangmin, et al. Force compliance control of multi-peg-in-hole assembling by space robot based on dynamic feedforward[J]. Journal of Mechanical Engineering, 2019, 55(4):207-217. [7] 叶伯生, 陶婕妤, 张文彬, 等. 基于动力学模型的工业机器人导纳控制研究[J]. 华中科技大学学报, 2020, 48(8):98-102, 108. YE Bosheng, TAO Jieyu, ZHANG Wenbin, et al. Research on admittance control of industrial robot based on dynamics model[J]. Journal of Huazhong University of Science and Technology, 2020, 48(8):98-102, 108. [8] 陈钢, 王玉琦, 贾庆轩, 等. 机器航天员轴孔装配过程中的力位混合控制方法[J]. 宇航学报, 2017, 38(4):410-419. CHEN Gang, WANG Yuqi, JIA Qingxuan, et al. Hybrid force and position control strategy of robonaut performing peg-in-hole assembly task[J]. Journal of Astronautics, 2017, 38(4):410-419. [9] 喻洋, 王耀兵, 魏世民, 等. 基于柔顺控制的机器人装配技术[J]. 北京邮电大学学报, 2020, 43(4):1-6. YU Yang, WANG Yaobing, WEI Shimin, et al. Robot assembly technology based on compliance control[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(4):1-6. [10] 胡瑞钦, 张立建, 孟少华, 等. 基于柔顺控制的航天器大部件机器人装配技术[J]. 机械工程学报, 2018, 54(11):85-93. HU Ruiqin, ZHANG Lijian, MENG Shaohua, et al. Robot assembly technology based on compliance control[J]. Journal of Mechanical Engineering, 2018, 54(11):85-93. [11] RIVAS B, BAUZANO E. Force-position control for a miniature camera robotic system for single-site surgery[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), November 3-7, 2013, Tokyo. Tokyo:IEEE, 2013:3065-3070. [12] FAN Y, LUO J, TOMIZUKA M. A learning framework for high precision industrial assembly[C]//2019 IEEE International Conference on Robotics and Automation (ICRA), May 20-24, 2019, Montreal. Montreal:IEEE, 2019:811-817. [13] KUMAR N, PANWAR V, SUKAVANAM N, et al. Neural network based hybrid force/position control for robot manipulators[J]. International Journal of Precision Engineering and Manufacturing, 2011, 12(3):419-426. [14] TANG T, LIN H, ZHAO Y. et al. Teach industrial robots peg-hole-insertion by human demonstration[C]//2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), July 12-15, 2016, Banff. Banff:IEEE, 2016:488-494. [15] INOUE T, MAGISTRIS G D, MUNAWAR A, et al. Deep reinforcement learning for high precision assembly tasks[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 24-28, 2017, Vancouver. Vancouver:IEEE, 2017:819-825. [16] ABU-DAKKA F J, ROZO L, CALDWELL D G. Force-based variable impedance learning for robotic manipulation[J]. Robotics and Autonomous Systems, 2018, 109:156-167. [17] THOMAS G, CHIEN M, TAMAR A, et al. Learning robotic assembly from CAD[C]//2018 IEEE International Conference on Robotics and Automation (ICRA), May 21-25, 2018, Brisbane. Brisbane:IEEE, 2018:3524-3531. [18] 王斐, 齐欢, 周星群, 等. 基于多源信息融合的协作机器人演示编程及优化方法[J]. 机器人, 2018, 40(4):551-559. WANG Fei, QI Huan, ZHOU Xingqun, et al. Demonstration programming and optimization method of cooperative robot based on multi-source information fusion[J]. Robot, 2018, 40(4):551-559. [19] 宋锐, 李凤鸣, 权威, 等. 多约束条件下机器人柔顺装配技能自学习[J]. 控制与决策, 2022, 37(5):1329-1337. SONG Rui, LI Fengming, QUAN Wei, et al. Flexible assembly skill self-learning of robot under multiple constraints[J]. Control and Decision, 2022, 37(5):1329-1337. [20] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas. Las Vegas:IEEE, 2016:770-778. |