[1] 李洪波. 共形几何代数——几何代数的新理论和计算框架[J]. 计算机辅助设计与图形学学报, 2005, 17(11):2383-2393. LI Hongbo. Conformal geometric algebra-a new framework for computational geometry[J]. Journal of Computer-aided Design& Computer Graphics, 2005, 17(11):2383-2393. [2] JOAN L. Using clifford/geometric algebra in robotics[C]//Proc. NATO Computations Non-commutative Algebra and Applications, 2003. [3] PEREZ A, CARTHY M. Sizing a serial chain to fit a task trajectory using clifford algebra exponentials[C]//Proceeding of ICRA Conference, Barcelona, Spain, 2005:23-41. [4] BAYRO-CORRCHANO E, ZAMORA-ESQUIVEL J. Differential inverse kinematics of robot devices using conformal geometric algebra[J]. Robotica, 2007, 25(1):43-61. [5] 倪振松, 廖启征, 魏世民, 等. 空间一般6R机械手位置反解的新方法[J]. 北京邮电大学学报, 2009, 32(2):29-33. NI Zhensong, LIAO Qizheng, WEI Shimin, et al. A new inverse solution method for space general 6R manipulator position[J]. Journal of Beijing University of Posts and Telecommunications, 2009, 32(2):29-33. [6] KIM J S, JEONG J H, PARK J H. Inverse kinematics and geometric singularity analysis of a 3-SPS/S redundant motion mechanism using conformal geometric algebra[J]. Mechanism and Machine Theory, 2015, 90:23-36. [7] SONG Y M, HAN P P, WANG P F. Type synthesis of 1T2R and 2R1T parallel mechanisms employing conformal geometric algebra[J]. Mechanism and Machine Theory, 2018, 121:475-486. [8] ZHANG Y, KONG X D, WEI S M, et al. CGA-Based approach to direct kinematics of parallel mechanism with the 3-RS structure[J]. Mechanism and Machine Theory, 2018, 124:162-178. [9] 张英, 魏世民, 李端玲, 等. 平面并联机构正运动学分析的几何建模和免消元计算[J]. 机械工程学报, 2018, 54(19):27-33. ZHANG Ying, WEI Shimin, LI Duanling, et al. Geometric modeling and free-elimination computing method for the forward kinematics analysis of planar parallel manipulators[J]. Journal of Mechanical Engineering, 2018, 54(19):27-33. [10] 黄昔光, 刘聪聪, 黄旭, 等. 空间连杆机构位移分析的共形几何代数方法[J]. 机械工程学报, 2021, 57(9):39-50. HUANG Xiguang, LIU Congcong, HUNAG Xu, et al. Displacement analysis of spatial linkage mechanisms based on conformal geometric algebra[J]. Journal of Mechanical Engineering, 2021, 57(9):39-50. [11] 胡波, 张达, 高俊林, 等. 基于共形几何代数求解(4SPS+SPR)+(2RPS+SPR)串并联机构位置正解[J]. 机械工程学报, 2021, 57(13):102-113. HU Bo, ZHANG Da, GAO Junlin, et al. The forward position solution of (4SPS+SPR)+(2RPS+SPR) serial-parallel manipulator was solved based on conformal geometric algebra[J]. Journal of Mechanical Engineering, 2021, 57(13):102-113. [12] TANEV T K. Kinematics of a hybrid (parallel-serial) robot manipulator[J]. Mechanism and Machine Theory, 2000, 35(9):1183-1196. [13] ZHENG X Z, BIN H Z, LUO Y G. Kinematic analysis of a hybrid serial-parallel manipulator[J]. The International Journal of Advanced Manufacturing Technology, 2004, 23(11-12):1005-1009. [14] HU B, LU Y, YU J J, et al. Analyses of inverse kinematics, statics and workspace of a novel 3RPS-3SPR serial-parallel manipulator[J]. The Open Mechanical Engineering Journal, 2012, 6(5):65-72. [15] GALLARDO-ALVARADO J, POSADAS-GARCIA J. Mobility analysis and kinematics of the semi-general 2(3-RPS) series-parallel manipulator[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(6):463-472. [16] NAYAK A, CARO S, WENGER P. Kinematic analysis of the 3-RPS-3-SPR series-parallel manipulator[J]. Robotica, 2019, 37(7):1240-1266. |