[1] 李文涛, 周正干. 激光增材制造钛合金构件的阵列超声检测方法研究[J]. 机械工程学报, 2020, 56(8):141-147. LI Wentao, ZHOU Zhenggan. Research on ultrasonic array testing methods of laser additive-manufacturing titanium alloy[J]. Journal of Mechanical Engineering, 2020, 56(8):141-147. [2] 史玉升, 伍宏志, 闫春泽, 等. 4D打印——智能构件的增材制造技术[J]. 机械工程学报, 2020, 56(15):1-25. SHI Yusheng, WU Hongzhi, YAN Chunze, et al. Four-dimensional printing-the additive manufacturing technology of intelligent components[J]. Journal of Mechanical Engineering, 2020, 56(15):1-25. [3] 王德花, 马筱舒. 需求引领创新驱动-3D打印发展现状及政策建议[J]. 中国科技产业, 2014, 8:46-53. WANG Dehua, MA Xiaoshu. Demand leads innovation drive-3D printing development status and policy suggestions[J]. China Science and Technology Industry, 2014, 8:46-53. [4] 张安峰, 李涤尘, 梁少端, 等. 高性能金属零件激光增材制造技术研究进展[J]. 航空制造技术, 2016, 22:16-22. ZHANG Anfeng, LI Dichen, LIANG Shaorui, et al. Research progress of laser additive manufacturing technology for high performance metal parts[J]. Aeronautical Manufacturing Technology, 2016, 22:16-22. [5] 何波, 王晨, 孙长青, 等. 基材预热对激光沉积TA15/GH4169复合结构组织与性能的影响[J]. 中国激光, 2020, 47(1):102002. HE Bo, WANG Chen, SUN Changqing, et al. Effect of substrate preheating on microstructure and properties of laser deposited TA15/GH4169 composite structure[J]. Chinese Journal of Lasers, 2020, 47(1):102002. [6] LIAO C, ZHOU J, SHEN H. Electrochemical corrosion behaviors before and after laser polishing of additive manufactured TC4 titanium alloy[J]. Chinese Journal of Lasers, 2020, 47(1):102003. [7] SONG Y, PARK S, CHOI D, et al. 3D welding and milling:Part I-a direct approach for freeform fabrication of metallic prototypes[J]. International Journal of Machine Tools & Manufacture, 2005, 45(9):1057-1062. [8] YANG Y, GONG Y, QU S, et al. Densification, mechanical behaviors, and machining characteristics of 316L stainless steel in hybrid additive/subtractive manufacturing[J]. International Journal of Advanced Manufacturing Technology, 2020, 107:177-189. [9] GONG Y, YANG Y, QU S, et al. Laser energy density dependence of performance in additive subtractive hybrid manufacturing of 316L stainless steel[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(1):1585-1596. [10] YANG Y, GONG Y, QU S, et al. Densification, surface morphology, microstructure and mechanical properties of 316L fabricated by hybrid manufacturing[J]. International Journal of Advanced Manufacturing Technology, 2018, 97(5):2687-2696. [11] LI P, GONG Y, LIANG C, et al. Effect of post-heat treatment on residual stress and tensile strength of hybrid additive and subtractive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(5):2579-2592. [12] LEE K H, YUN G J. A novel heat source model for analysis of melt pool evolution in selective laser melting process[J]. Additive Manufacturing, 2020, 36(5):101497. [13] LI Y, ZHOU K, TOR S B, et al. Heat transfer and phase transition in the selective laser melting process[J]. International Journal of Heat & Mass Transfer, 2017, 108:2408-2416. [14] 黄鑫. 钛合金增减材复合制造工艺研究[D]. 大连:大连理工大学, 2017. HUANG Xin. Research on the composite manufacturing process of titanium alloy adding and reducing materials[D]. Dalian:Dalian University of Technology, 2017. [15] 李帅. 增减材复合制造钛合金铣削特性研究[D]. 大连:大连理工大学, 2018. LI Shuai. The study on the milling characteristic for titanium alloy in additive/subtractive hybrid manufacturing[D]. Dalian:Dalian University of Technology, 2018. [16] SALONITIS K, ALVISE L D, SCHOINOCHORITIS B, et al. Additive manufacturing and post-processing simulation:Laser cladding followed by high speed machining[J]. International Journal of Advanced Manufacturing Technology, 2016, 85(9):2401-2411. [17] ZHAO Y, SUN J, LI J, et al. The stress coupling mechanism of laser additive and milling subtractive for Fe-Cr alloy made by additive-subtractive composite manufacturing[J]. Journal of Alloys and Compounds, 2018, 769:898-905. [18] LIU Y, ZHANG J, PANG Z. Numerical and experimental investigation into the subsequent thermal cycling during selective laser melting of multi-layer 316L stainless steel[J]. Optics & Laser Technology, 2018, 98:23-32. [19] LI R, SHI Y, LIU J, et al. Effects of processing parameters on the temperature field of selective laser melting metal powder[J]. Powder Metallurgy and Metal Ceramics, 2009, 48(3):186-195. [20] UMBRELLO D, SAOUBI R M, OUTEIRO J C. The influence of Johnson-Cook material constants on finite element simulation of machining of AISI 316L steel[J]. International Journal of Machine Tools & Manufacture, 2007, 47(3):462-470. [21] WU Y, SHI H, ZHANG K, et al. Numerical investigation of grain boundary effects on elevated-temperature deformation and fracture[J]. International Journal of Solids and Structures, 2006, 43(14):4546-4577. [22] 姚嵩. 基于ABAQUS的不锈钢材料切削过程的模拟与数值分析[D]. 武汉:华中科技大学, 2011. YAO Song. The simulation and numerical analysis about manufacture processing of stainless steel based on ABAQUS[D]. Wuhan:Huazhong University of Science and Technology, 2011. [23] JIANG W, ZHANG Y, WOO W. Using heat sink technology to decrease residual stress in 316L stainless steel welding joint:Finite element simulation[J]. International Journal of Pressure Vessels & Piping, 2012, 92:56-62. [24] HU X, MA C, YANG Y, et al. Study on residual stress releasing of 316L stainless steel welded joints by ultrasonic impact treatment[J]. International Journal of Steel Structures, 2020, 20(3):1014-1025. [25] LUO Z, Y ZHAO. Numerical simulation of part-level temperature fields during selective laser melting of stainless steel 316L[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(5):1615-1635. |