Journal of Mechanical Engineering ›› 2021, Vol. 57 ›› Issue (9): 213-232.doi: 10.3901/JME.2021.09.213
Previous Articles Next Articles
GAO Shang, LI Honggang, KANG Renke, HE Yiwei, ZHU Xianglong
Received:
2020-06-17
Revised:
2020-11-25
Online:
2021-05-05
Published:
2021-06-15
CLC Number:
GAO Shang, LI Honggang, KANG Renke, HE Yiwei, ZHU Xianglong. Recent Advance in Preparation and Ultra-precision Machining of New Generation Semiconductor Material of β-Ga2O3 Single Crystals[J]. Journal of Mechanical Engineering, 2021, 57(9): 213-232.
[1] TSAO J Y,CHOWDHURY S,HOLLIS M A,et al. Ultrawide-bandgap semiconductors:Research opportunities and challenges[J]. Advanced Electronic Materials,2018,4(1):1600501. [2] XUE H,HE Q,JIAN G,et al. An Overview of the Ultrawide bandgap Ga2O3 semiconductor-based Schottky barrier diode for power electronics application[J]. Nanoscale Research Letters,2018,13(1):290. [3] STEPANOV S I,NIKOLAEV V I,BOUGROV V E,et al. Gallium oxide:Properties and application-a review[J]. Reviews on Advanced Materials Science,2016,44(1):63-86. [4] PEARTON S J,YANG J,PATRICK H,et al. A review of Ga2O3 materials,processing,and devices[J]. Applied Physics Reviews,2018,5(1):11301. [5] MASTRO M A,KURAMATA A,CALKINS J,et al. Opportunities and future directions for Ga2O3[J]. ECS Journal of Solid State Science and Technology,2017,6(5):356-359. [6] Single-crystal gallium oxide substrates[EB/OL]. Tamura Corporation,[2020-09-09]. https://www.tamuracorp.com/products/gao/index.html. [7] 陶绪堂,穆文祥,贾志泰. 宽禁带半导体氧化镓晶体和器件研究进展[J]. 中国材料进展,2020,39(2):113-123. TAO Xutang,MU Wenxiang,JIA Zhitai. Research progress in the crystal growth and devices of wide-bandgap β-Ga2O3[J]. Materials China,2020,39(2):113-123. [8] ZHANG S,LIAN X,MA Y,et al. Growth and characterization of 2-inch high quality β-Ga2O3 single crystals grown by EFG method[J]. Journal of Semiconductors,2018,39(8):83003-83005. [9] GAO S,HUANG H,ZHU X,et al. Surface integrity and removal mechanism of silicon wafers in chemo-mechanical grinding using a newly developed soft abrasive grinding wheel[J]. Materials Science in Semiconductor Processing,2017,63:97-106. [10] CHASE A O. Growth of β‐Ga2O3 by the Verneuil Technique[J]. Journal of the American Ceramic Society,1964,47(9):470. [11] DEPUYDT B,THEUWIS A,ROMANDIC I. Germanium:From the first application of Czochralski crystal growth to large diameter dislocation-free wafers[J]. Materials Science in Semiconductor Processing,2006,9(4-5):437-443. [12] SADAMITSU S,UMENO S,KOIKE Y,et al. Dependence of the grown-in defect distribution on growth rates in Czochralski silicon[J]. Japanese Journal of Applied Physics,1993,32(9R):3675-3681. [13] AKSELROD M S,BRUNI F J. Modern trends in crystal growth and new applications of sapphire[J]. Journal of Crystal Growth,2012,360:134-145. [14] TOMM Y,REICHE P,KLIMM D,et al. Czochralski grown Ga2O3 crystals[J]. Journal of Crystal Growth,2000,220(4):510-514. [15] GALAZKA Z,UECKER R,IRMSCHER K,et al. Czochralski growth and characterization of β‐Ga2O3 single crystals[J]. Crystal Research and Technology,2010,45(12):1229-1236. [16] GALAZKA Z,IRMSCHER K,UECKER R,et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method[J]. Journal of Crystal Growth,2014,404:184-191. [17] 穆文祥,贾志泰,尹延如,等. 氧化镓单晶的生长技术研究[C]//中国硅酸盐学会. 第17届全国晶体生长与材料学术会议论文集,哈尔滨,中国,2015:47. MU Wenxiang,JIA Zhitai,YIN Yanru,et al. Research on the growth technology of Ga2O3 single crystal[C]//Chinese Ceramic Society. Proceedings of the 17th National Conference on Crystal Growth and Materials,Harbin,China,2015:47. [18] 穆文祥. β-Ga2O3单晶的生长、加工及性能研究[D]. 济南:山东大学,2018. MU Wenxiang. Study on the single crystal growth,process and properties of β-Ga2O3[D].Jinan:Shandong University,2018 [19] 赵绪尧,孙敦陆,张会丽,等. 提拉法生长超宽禁带半导体β-Ga2O3单晶的研究[J]. 中国照明电器,2017(10):3. ZHAO Xuyao,SUN Dunlu,ZHANG Huili,et al. Study on growth of ultra-wide bandgap semiconductor β-Ga2O3 single crystal by Czochralski method[J]. China Light and Lighting,2017(10):3. [20] kECK P H,GoLAY M J. Crystallization of Silicon from a floating liquid zone[J]. Physical Review,1953,89(6):1297. [21] UEDA N,HOSONO H,WASEDA R,et al. Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals[J]. Applied Physics Letters,1997,70(26):3561-3563. [22] VILLORA E G,SHIMAMURA K,YOSHIKAWA Y,et al. Large-size β-Ga2O3 single crystals and wafers[J]. Journal of Crystal Growth,2004,270(3-4):420-426. [23] BHAUMIK I,BHATT R,GANESAMOORTHY S,et al. Temperature-dependent index of refraction of monoclinic Ga2O3 single crystal[J]. Applied Optics,2011,50(31):6006-6010. [24] SUZUKI N,OHIRA S,TANAKA M,et al. Fabrication and characterization of transparent conductive Sn‐doped β-Ga2O3 single crystal[J]. Physica Status Solidi C,2007,4(7):2310-2313. [25] OHIRA S,SUZUKI N,ARAI N,et al. Characterization of transparent and conducting Sn-doped β-Ga2O3 single crystal after annealing[J]. Thin Solid Films,2008,516(17):5763-5767. [26] 张俊刚,夏长泰,吴锋,等. β-Ga2O3单晶浮区法生长及其光学性质[J]. 功能材料,2006,37(3):358-360. ZHANG Jungang,XIA Changtai,WU Feng,et al. Floating zone technique growth of β-Ga2O3 single crystals and their optical properties[J]. Journal of Functional Materials,2006,37(3):358-360. [27] ZHANG J,LI B,XIA C,et al. Growth and spectral characterization of β-Ga2O3 single crystals[J]. Journal of Physics and Chemistry of Solids,2006,67(12):2448-2451. [28] 张小桃,谢建军,夏长泰,等. 光学浮区法生长掺锡氧化镓单晶及性能研究[J]. 人工晶体学报,2015,44(9):2354-2358. ZHANG Xiaotao,XIE Jianjun,XIA Changtai,et al. Growth and properties of Sn: β-Ga2O3 single crystal by optical floating zone method[J]. Journal of Synthetic Crystals,2015,44(9):2354-2358. [29] 王璐璐,夏长泰,赛青林,等. 光学浮区法生长Si: β-Ga2O3单晶及其光谱研究[J]. 人工晶体学报,2013,42(4):607-610. WANG Lulu,XIA Changtai,SAI Qinglin,et al. Growth and optical properties of Si: β-Ga2O3 single crystal by floating zone method[J]. Journal of Synthetic Crystals,2013,42(4):607-610. [30] 吴庆辉,唐慧丽,苏良碧,等. 光学浮区法生长掺锗氧化镓单晶及其性质研究[J]. 人工晶体学报,2016,45(6):1440-1444. WU Qinghui,TANG Huili,SU Liangbi,et al. Study on growth and properties of Ge: β-Ga2O3 single crystal by optical floating[J]. Journal of Synthetic Crystals,2016,45(6):1440-1444. [31] 吴庆辉,唐慧丽,苏良碧,等. 光学浮区法生长掺铟氧化镓单晶及其性能[J]. 硅酸盐学报,2017,45(4):548-552. WU Qinghui,TANG Huili,SU Liangbi,et al. Growth and properties of β-Ga2O3:In single crystal by optical floating zone method[J]. Journal of the Chinese Ceramic Society,2017,45(4):548-552. [32] SHIMAMURA K,VILLORA E G,MURAMATU K,et al. Crystal growth technology of fluoride and oxide developed from the viewpoint of their material and functional properties[J]. Journal of the Japanese Association for Crystal Growth,2006,33(147):147-154. [33] AIDA H,NISHIGUCHI K,TAKEDA H,et al. Growth of β-Ga2O3 single crystals by the edge-defined,film fed growth method[J]. Japanese Journal of Applied Physics,2008,47(11R):8506. [34] KURAMATA A,KOSHI K,WATANABE S,et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth[J]. Japanese Journal of Applied Physics,2016,55(12):1202A. [35] MASTRO M A,KURAMATA A,CALKINS J,et al. Perspective-opportunities and future directions for Ga2O3[J]. ECS Journal of Solid State Science and Technology,2017,6(5):P356-P359. [36] KURAMATA A,KOSHI K,WATANABE S,et al. Bulk crystal growth of Ga2O3[C]//Oxide-based Materials and Devices IX. San Francisco,California,United States:International Society for Optics and Photonics,2018,10533:105330E. [37] MU W,JIA Z,YIN Y,et al. High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method[J]. Journal of Alloys and Compounds,2017,714:453-458. [38] 贾志泰,穆文祥,尹延如,等. 导模法生长高质量氧化镓单晶的研究[J]. 人工晶体学报,2017,46(2):193-196. JIA Zhitai,MU Wenxiang,YIN Yanru,et al. Growth of high quality Ga2O3 single crystal by EFG method[J]. Journal of Synthetic Crystals,2017,46(2):193-196. [39] MU W,JIA Z,YIN Y,et al. One-step exfoliation of ultra-smooth β-Ga2O3 wafers from bulk crystal for photodetectors[J]. Cryst.Eng.Comm.,2017,19(34):5122-5127. [40] 唐慧丽,何诺天,罗平,等. 超宽禁带半导体β-Ga2O3单晶生长突破2英寸[J]. 人工晶体学报,2017,46(12):2533-2534. TANG Huili,HE Ruotian,LUO Ping,et al. Ultra-wide bandgap semiconductor β-Ga2O3 single crystal growth breaks through 2 inches[J]. Journal of Synthetic Crystals,2017,46(12):2533-2534. [41] 练小正,张胜男,程红娟,等. 导模法生长大尺寸高质量β-Ga2O3单晶[J]. 半导体技术. 2018,43(8):622-626. LIAN Xiaozheng,ZHANG Shengnan,CHENG Hongjuan,et al. High-quality and large-size β-Ga2O3 single crystals grown by edge-defined film-fed growth method[J]. Semiconductor Technology,2018,43(8):622-626. [42] ZHANG S,LIAN X,MA Y,et al. Growth and characterization of 2-inch high quality β-Ga2O3 single crystals grown by EFG method[J]. Journal of Semiconductors,2018,39(08):31-35. [43] HOSHIKAWA K,OHBA E,KOBAYASHI T,et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air[J]. Journal of Crystal Growth,2016,447:36-41. [44] OHBA E,KOBAYASHI T,KADO M,et al. Defect characterization of β-Ga2O3 single crystals grown by vertical Bridgman method[J]. Japanese Journal of Applied Physics,2016,55(12):1202B. [45] WU Y,GAO S,HUANG H. The deformation pattern of single crystal β-Ga2O3 under nanoindentation[J]. Materials Science in Semiconductor Processing,2017,71:321-325. [46] WU Y,GAO S,KANG R,et al. Deformation patterns and fracture stress of beta-phase gallium oxide single crystal obtained using compression of micro-pillars[J]. Journal of Materials Science,2019,54(3):1958-1966. [47] AN Q,LI G. Shear-induced mechanical failure of β-Ga2O3 from quantum mechanics simulations[J]. Physical Review B,2017,96(14):144113. [48] AHN M,SARRACINO A,ANSARI A,et al. Surface morphology and straight crack generation of ultrafast laser irradiated β-Ga2O3 [J]. Journal of Applied Physics,2019,125(22):223104. [49] AHN M,SARRACINO A,ANSARI A,et al. Unique material modifications of Ga2O3 enabled by ultrafast laser irradiation[C]//Oxide-based Materials and Devices XI. San Francisco,California,United States:International Society for Optics and Photonics,2020,11281:112810O. [50] KISHIMURA H,MATSUMOTO H. Evaluation of the shock-induced phase transition in β-Ga2O3 [J]. Japanese Journal of Applied Physics,2018,57(12):125503. [51] NIKOLAEV V I,CHIKIRVAKA A V,GUZILOVA L I,et al. Microhardness and crack resistance of gallium oxide[J]. Technical Physics Letters,2019,45(11):1114-1117. [52] YAO Y,ISHIKAWA Y,SUHAWARA Y. Dislocation classification of a large-area β-Ga2O3 single crystal via contrast analysis of affine-transformed X-ray topographs[J]. Journal of Crystal Growth,2020:125825. [53] YAO Y,SUGAWARA Y,ISHIKAWA Y. Observation of dislocations in β-Ga2O3 single-crystal substrates by synchrotron X-ray topography,chemical etching,and transmission electron microscopy[J]. Japanese Journal of Applied Physics,2020,59(4):045502. [54] OGAWA K,OGAWA N,KOSAKA R,et al. AFM observation of etch-pit shapes on β-Ga2O3 (001) surface formed by molten alkali etching[C]//Materials Science Forum. Switzerland:Trans Tech Publications Ltd,2020,1004:512-518. [55] LEE H K,YUN H J,SHIM K H,et al. Improvement of dry etch-induced surface roughness of single crystalline β-Ga2O3 using post-wet chemical treatments[J]. Applied Surface Science,2020,506:144673. [56] MASUI T,KOSHI K,DOIOKA K,et al. Ga2O3-based single crystal substrate: United States,US20150380500A1[P]. 2015-12-31. [57] KOSHI K,WATANABE S,TAKIZAWA M,et al. β-Ga2O3-based single crystal substrate: United States,US9431489B2[P]. 2016-08-30. [58] Gallium oxide substrates[EB/OL]. Kyma Technologies Corporation,[2020-09-09]. http://www.kymatech.com/products-services/materials/ga2O3-related-iii2o3-materials/530-gallium-oxide-substrates. [59] Ga2O3,beta-gallium oxide wafer and crystal substrates semi-insulating type[EB/OL]. MSE Supplies Corporation,[2020-09-09]. https://www.msesupplies.com/products/ga2O3-eta-gallium-oxide-crystal-substrates. [60] BLEVINS J D,STEVENS K,LINDSEY A,et al. Development of large diameter semi-insulating gallium oxide (Ga2O3) substrates[J]. IEEE Transactions on Semiconductor Manufacturing,2019,32(4):466-472. [61] BLEVINS J D,CHABAK K,JESSEN G,et al. Growth of 50mm beta-gallium oxide (β-Ga2O3) substrates[C]// Proceedings of the International Conference on Compound Semiconductor Manufacturing Technology,Austin Texas,USA,2018:1305. [62] LEE T,JEONG H,LEE S,et al. Effect of the lapping platen groove density on the characteristics of microabrasive-based lapping[J]. Micromachines,2020,11(8):775. [63] HOSHIKAWA K,KOBAYASHI T,OHBA E,et al. 50 mm diameter Sn-doped (001) β-Ga2O3 crystal growth using the vertical Bridgeman technique in ambient air[J]. Journal of Crystal Growth,2020,546:125778. [64] HOSHIKAWA K,KOBAYASHI T,MATSUKI Y,et al. 2-inch diameter (100) β-Ga2O3 crystal growth by the vertical Bridgman technique in a resistance heating furnace in ambient air[J]. Journal of Crystal Growth,2020,545:125724. [65] 黄传锦,周海,朱永伟,等. 研磨液在氧化镓晶体研磨中的作用[J]. 硅酸盐学报,2019,47(01):43-47. HUANG Chuanjin,ZHOU Hai,ZHU Yongwei,et al. Effect of lapping fluid on β-Ga2O3 crystal lapping process[J]. Journal of the Chinese Ceramic Society,2019,47(01):43-47. [66] 徐晓明,周海,黄传锦,等. 适用于硬脆易解理单晶氧化镓晶片的高效低损伤研磨方法:中国,CN201611130455.0[P]. 2017-05-24. XU Xiaoming,ZHOU Hai,HUANG Chuanjin,et al. High-efficiency and low-damage lapping method of had-brittle and easy-cleavage β-Ga2O3 single crystal substrates:China,CN201611130455.0[P]. 2017-05-24. [67] 周海,徐晓明,龚凯. 氧化镓晶片抗解理悬浮研磨液及其制备方法:中国,CN201510658056.0[P]. 2016-01-27. ZHOU Hai,XU Xiaoming,Gong Kai. Preparation method of lapping slurry for improving the cleavage fracture of monocrystal β-Ga2O3 substrates:China,CN201510658056.0[P]. 2016-01-27. [68] 龚凯,周海,黄传锦,等. 新型研磨垫对单晶氧化镓研磨的实验研究[J]. 现代制造工程,2019(5):13-17. GONG Kai,ZHOU Hai,HUANG Chuanjin,et al. Experimental research on lapping of single crystal gallium oxide with new type lapping pad[J]. Modern Manufacturing Engineering,2019(5):13-17. [69] 高翔,周海,张清,等. 氧化镓衬底基片化学机械抛光的研究[J]. 机械设计与制造,2014(8):89-91. GAO Xiang,ZHOU Hai,ZHANG Qing,et al. Research of Ga2O3 Substrate CMP Technology[J]. Machinery Design & Manufacture,2014(8):89-91. [70] 龚凯,周海,韦嘉辉,等. 抛光垫特性对氧化镓CMP影响的实验研究[J]. 工具技术,2018,52(6):29-32. GONG Kai,ZHOU Hai,WEI Jiahui,et al. Experimental study on influence of polishing pad characteristics on gallium oxide CMP[J]. Tool Engineering,2018,52(6):29-32. [71] 龚凯. 单晶氧化镓研抛加工技术研究[D]. 镇江:江苏大学,2018. GONG Kai. Research on lapping and polishing technologies of Ga2O3 single crystal substrates[D]. Zhenjiang:Jiangsu University,2018. [72] 徐世海,李晖,高飞,等. β-Ga2O3 (100)面的CMP研究及优化[J]. 微纳电子技术,2017,54(3):208-212. XU Shihai,LI Hui,GAO Fei,et al. Investigation and optimization of the CMP of the β-Ga2O3 (100) face[J]. Micronanoelectronic Technology,2017,54(3):208-212. [73] HUANG C,ZHOU H,ZHU Y,et al. Effect of chemical action on the chemical mechanical polishing of β-Ga2O3 (100) substrate[J]. Precision Engineering,2019,56(12):184-190. [74] HUANG C,MU W,ZHOU H,et al. Effect of OH− on chemical mechanical polishing of β-Ga2O3 (100) substrate using an alkaline slurry[J]. RSC Advances,2018,8(12):6544-6550. [75] HUANG C,ZHOU H,XIA C,et al. Effect of abrasive grit shape on polishing of β-Ga2O3 (100) substrate[J]. Precision Engineering,2020,61:65-71. [76] KOSHI K,WATANABE S,TAKIZAWA M,et al. β-Ga2O3-based single crystal substrate:USA,US9431489B2[P]. 2016-08-30. [77] Gallium Oxide[EB/OL]. DISCO Technology,[2020-09-09].https://technology.discousa.com/material/galliumoxide/. [78] LI X,HUANG S,WU Y,et al. Performance evaluation of graphene oxide nanosheet water coolants in the grinding of semiconductor substrates[J]. Precision Engineering,2019,60:291-298. [79] GAO S,WU Y,KANG R,et al. Nanogrinding induced surface and deformation mechanism of single crystal β-Ga2O3[J]. Materials Science in Semiconductor Processing,2018,79:165-170. [80] ZHOU H,WEI J,FANG S,et al. Analysis of the grinding characteristics of β-Ga2O3 crystal on different planes[J]. Journal of Advanced Manufacturing Systems,2020,19(2):235-248. [81] YOUNG H T,LIAO H T,HUANG H Y. Novel method to investigate the critical depth of cut of ground silicon wafer[J]. Journal of Materials Processing Technology,2007,182(1):157-162. [82] ZHOU L,TIAN Y B,HUANG H,et al. A study on the diamond grinding of ultra-thin silicon wafers[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2012,226(1):66-75. [83] 高尚,王紫光,康仁科,等. 工件旋转法磨削硅片的磨粒切削深度模型[J]. 机械工程学报,2016,52(17):86-93. GAO S,WANG Z,KANG R,et al. Model of grain depth of cut in wafer rotation grinding method for silicon wafers[J]. Journal of Mechanical Engineering,2016,52(17):86-93. [84] LIN B,ZHOU P,WANG Z,et al. Analytical elastic–plastic cutting model for predicting grain depth-of-cut in ultrafine grinding of silicon wafer[J]. Journal of Manufacturing Science and Engineering,2018,140(12):121001. |
[1] | LI Ziqing, CUI Zhangcai, BIAN Subiao, LI Huihui, LU Jing, ORIOL Arteaga, XU Xipeng. Non-destructive Measurement and Characterization of Damage Layer of Single-crystal Diamond Substrate after Ultra-precision Machining [J]. Journal of Mechanical Engineering, 2024, 60(4): 239-249. |
[2] | YUAN Song, GUO Xiaoguang, JIN Zhuji, KANG Renke, GUO Dongming. A Review of High-efficiency and Ultra-low Damage Processing Mechanism and Technology of Diamond [J]. Journal of Mechanical Engineering, 2024, 60(3): 337-353. |
[3] | HE Chunlei, ZHANG Jianguo, WANG Shuqi, REN Chengzu. Investigation on Measurement Method of Ultra-precision Turning Surface Roughness Based on Multi-wavelength Scattering Characteristic [J]. Journal of Mechanical Engineering, 2023, 59(3): 308-317. |
[4] | PENG Xiaoqiang, LI Huang, WANG Yueming, GUAN Chaoliang, HU Hao, LAI Tao, XU Chao. Ultra-precision Cutting Characteristics of Convex Blazed Gratings with Electroless NiP [J]. Journal of Mechanical Engineering, 2023, 59(21): 121-130. |
[5] | LI Tao, HUANG Weiqi, LONG Gui, YANG Sishuo, ZHANG Jianguo, XIAO Junfeng, XU Jianfeng. Surface Topography Evolution of Single Crystal Silicon in Laser Polishing [J]. Journal of Mechanical Engineering, 2023, 59(21): 52-64. |
[6] | YANG Yang, LIN Rixiong, DU Jianjun. Study of the 3D Topography Modelling and Control Method for Blazed Gratings Induced by Ultrasonic Elliptical Vibration Cutting [J]. Journal of Mechanical Engineering, 2023, 59(17): 291-299. |
[7] | BAI Yuchao, CHEN Jie, LIU Linqing, WEI Xiongmian, WANG Di. Influence Mechanism of Heat Treatment on Ultra-precision Turning Characteristics of Additively Manufactured AlSi10Mg Parts [J]. Journal of Mechanical Engineering, 2022, 58(19): 315-330. |
[8] | CHAN Changyuen, LI Lihua, LEE Wingbun, YUAN Wei, LIU Yahui. Research on Light Field Imaging Based on Compound Eye Ultra-precision Machining [J]. Journal of Mechanical Engineering, 2016, 52(17): 50-57. |
[9] | LEE Wingbun;KONG Lingbao;CHEUNG Chifai;TO Suet;CHEN Xin;LIU Qiang. An Overview of Ultra-precision Diamond Machining of Microstructured Freeform Surfaces [J]. , 2013, 49(19): 144-155. |
[10] | GUO Yinbiao;YANG Wei;WANG Zhenzhong;PENG Yunfeng;BI Guo;YANG Ping. Technology and Application of Ultra-precision Machining for Large Size Optic [J]. , 2013, 49(19): 171-178. |
[11] | YUAN Julong;WU Zhe;LÜBinghai;NGUYEN Ducnam;LU Huizong;ZHAO Ping. Review on Ultra-precision Polishing Technology of Aspheric Surface [J]. , 2012, 48(23): 167-177. |
[12] | CHEN Mingjun;LIU Yesheng;LI Ziang;CHU Xin. New Research Progress in Design and Manufacture of Artificial Optical Compound Eye [J]. , 2011, 47(1): 161-168. |
[13] | YUAN Julong;ZHANG Feihu;DAI Yifan;KANG Renke;YANG Hui;LÜBinghai. Development Research of Science and Technologies in Ultra-precision Machining Field [J]. , 2010, 46(15): 161-177. |
[14] | LEE Wingbun;CHEUNG Chifai;TO Suet;KONG Lingbao;JIANG Jinbo. Integrated Manufacturing Technology for Design, Machining and Measurement of Freeform Optics [J]. , 2010, 46(11): 137-148. |
[15] | YUAN Julong;WANG Zhiwei;WEN Donghui;Lü Binghai;DAI Yong. REVIEW OF THE CURRENT SITUATION OF ULTRA-PRECISION MACHINING [J]. , 2007, 43(1): 35-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||