Journal of Mechanical Engineering ›› 2021, Vol. 57 ›› Issue (3): 11-25.doi: 10.3901/JME.2021.03.011
Previous Articles Next Articles
TIAN Dake1, FAN Xiaodong1, ZHENG Xijian1, LIU Rongqiang2, GUO Hongwei2, DENG Zongquan2
Received:
2020-02-18
Revised:
2020-07-22
Online:
2021-02-05
Published:
2021-03-16
CLC Number:
TIAN Dake, FAN Xiaodong, ZHENG Xijian, LIU Rongqiang, GUO Hongwei, DENG Zongquan. Research Status and Prospect of Micro-gravity Environment Simulation for Space Deployable Antenna[J]. Journal of Mechanical Engineering, 2021, 57(3): 11-25.
[1] FREELAND R E,BILYEU G D,VEAL G R. Validation of a unique concept for a low-cost,lightweight space-deployable antenna structure[J]. Acta Astronautica,1995,35(9-11):565-572. [2] MITSUGI J,ANDO K,SENBOKUYA Y,et al. Deployment analysis of large space antenna using flexible multibody dynamics simulation[J]. Acta Astronautica,2000,47(1):19-26. [3] SONG X K,DENG Z Q,GUO H W. Networking of Bennett linkages and its application on deployable parabolic cylindrical antenna[J]. Mechanism and Machine Theory,2017,109:95-125. [4] ANGELETTI F,GASBARRI P,SABATINI M. Optimal design and robust analysis of a net of active devices for micro-vibration control of an on-orbit large space antenna[J]. Acta Astronautica,2019,164:241-253. [5] MO L D,CHEN Y K,CHI G X,et al. Experimental study on the multi-dimensional microgravity simulation system for manipulators[C]//2015 International Conference on Fluid Power and Mechatronics. Harbin,China:IEEE,2015:1222-1227. [6] QIN L,JIA X J,LIU C F,et al. Friction compensation control of space manipulator considering the effects of gravity[C]//The 35th Chinese Control Conference. Chengdu,China:IEEE Computer Society,2016:951-956. [7] QIN L,LIU F C,LIANG L H,et al. Fuzzy adaptive robust control for space robot considering the effect of the gravity[J]. Chinese Journal of Aeronautics,2014,27(6):1562-1570. [8] 姚燕生. 三维重力补偿方法与空间浮游目标模拟实验装置研究[D]. 合肥:中国科学技术大学,2006. YAO Yansheng. Research on 3D gravity compensation and equipment of space floating objective simulation[D]. Hefei:University of Science and Technology of China,2006. [9] 刘春辉. 微重力落塔试验设备[J]. 强度与环境,1993(4):41-52. LIU Chunhui. Micro-gravity falling tower test equipment[J]. Structure & Environment Engineering,1993(4):41-52. [10] 朱战霞,袁建平. 航天器操作的微重力环境构建[M].北京:中国宇航出版社,2013. ZHU Zhanxia,YUAN Jianping. Construction of microgravity environment for spacecraft operation[M]. Beijing:China Aerospace Press,2013. [11] JACK L,ERIC N,RAYMOND S. Capabilities and constraints of NASA's ground-based reduced gravity facilities[C]//The Second International Microgravity Combustion Workshop. Cleveland,Ohio,USA:NASA,1992:45-60. [12] KUFNER E,BLUM J,CALLENS N,et al. ESA's drop tower utilisation activities 2000 to 2011[J]. Microgravity Science and Technology,2011,23(4):409-425. [13] Center of Applied Space Technology and Microgravity. The Bremen Drop Tower[EB/OL].[2020-1-4]. https://www.zarm.uni-bremen.de/de/fallturm/allgemeine-informationen.html. [14] KRAEGER A,PAASSEN R V. Micro- and partial gravity atmospheric flight[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Monterey,California,USA:AIAA,2002:1-11. [15] 屈斌,王启,王海平,等. 失重飞机飞行方法研究[J]. 飞行力学,2007,25(2):65-71. QU Bin,WANG Qi,WANG Haiping,et al. Zero-g aircraft flight method research[J]. Flight Dynamics,2007,25(2):65-71. [16] PLETSER V. Short duration microgravity experiments in physical and life sciences during parabolic flights:The first 30 ESA campaigns[J]. Acta Astronautica,2004,55(10):829-854. [17] Japan Aerospace Exploration Agency. Engineering test satellite VIII(ETS-VIII)[EB/OL].[2020-01-04]. https://global.jaxa.jp/projects/sat/ets8/topics.html. [18] BLOCK J,BAGER A,BEHRENS J. A self-deploying and self-stabilizing helical antenna for small satellites[J]. Acta Astronautica,2013,86:88-94. [19] 丁敏. 大跨度伸缩式零重力模拟试验装置设计与分析[D]. 哈尔滨:哈尔滨工业大学,2015. DING Min. Design and analysis of large span and scalable test device for zeor-gravity simulation[D]. Harbin:Harbin Institute of Technology,2015. [20] GEFKE G G,CARIGNAN C R,ROBERTS B J,et al. Ranger telerobotic shuttle experiment:Status report[C]//Proceedings of SPIE-The International Society for Optical Engineering. Newton,MA,United States:SPIE,2001:123-132. [21] CARIGNAN C R,AKIN D L. The reaction stabilization of on-orbit robots[J]. IEEE Control Systems,2001,20(6):19-33. [22] 成致祥. 中性浮力微重力环境模拟技术[J]. 航天器环境工程,2000(1):1-6. CHENG Zhixiang. Weightless environment simulation techniques of neutral buoyancy[J]. Spacecraft Environment Engineering,2000(1):1-6. [23] AKIN D,RANNIGER C,DELEVIE M. Development and testing of an EVA simulation system for neutral buoyancy operations[C]//Space Programs and Technologies Conference. Reston,VA,United states:AIAA,1996:1-8. [24] WALTER L,HEARD J,MARK S. Neutral buoyancy evaluation of extravehicular activity assembly of a large precision reflector[J]. Journal of Spacecraft and Rockets,1994,31(4):569-577. [25] ANDERSON D E,JAMES D G,MOORE T O. Using telerobotic operations to increase EVA effectiveness:results of aerobrake assembly neutral buoyancy testing[C]//4th Annual Conference on Intelligent Robotic Systems for Space Exploration. Troy,NY,United States:IEEE,1992:50-60. [26] SCHWARTZ J L,PECK M A,HALL C D. Historical review of air-bearing spacecraft simulators[J]. Journal of Guidance Control and Dynamic,2003,26(4):513-522. [27] MENON C,BUSOLO S,COCUZZA S,et al. Issues and solutions for testing free-flying robots[J]. Acta Astronautica,2007,60(12):957-965. [28] RYBUS T,SEWERYN K. Planar air-bearing microgravity simulators:Review of applications,existing solutions and design parameters[J]. Acta Astronautica,2016,120:239-259. [29] CHRISTIAN S. Canadian space robotic activities[J]. Acta Astronautica,1997,41(4-10):239-246. [30] SCHUBERT H C,HOW J P. Space construction:an experimental testbed to develop enabling technologies[C]//Proceedings of SPIE-The International Society for Optical Engineering. Pittsburgh,PA,United States:SPIE,1997:179-188. [31] SATO N,WAKABAYASHI Y. JEMRMS design features and topics from testing[C]//6th International Symposium on Artificial Intelligence,Robotics and Automation in Space:i-SAIRAS 2001. Quebec,Canada:Canadian Space Agency,2001:1-7. [32] SATO Y,EJIRI A,IIDA Y,et al. Micro-G emulation system using constant-tension suspension for a space manipulator[C]//IEEE International Conference on Robotics and Automation. Sacramento,Califomia,USA:IEEE,1991:1893-1900. [33] WHITE G C,XU Y. An active vertical-direction gravity compensation system[J]. IEEE Transactions on Instrumentation and Measurement,1994,43(6):786-792. [34] MORITA T,KURIBARA F,SHIOZAWA Y,et al. A novel mechanism design for gravity compensation in three dimensional space[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Kobe,Japan:IEEE,2003:163-168. [35] TSUNODA H,HARIU K,KAWAKAMI Y,et al. Deployment test methods for a large deployable mesh reflector[J]. Journal of Spacecraft and Rockets,1997,34(6):811-816. [36] TSUNODA H,HARIU K,KAWAKAMI Y,et al. Structural design and deployment test methods for a large deployable mesh reflector[C]//38th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference. Kissimmee,FL,USA:AIAA,1997:2963-2971. [37] MEGURO A,SHINTATE K,USUI M,et al. In-orbit deployment characteristics of large deployable antenna reflector on board engineering test satellite VIII[J]. Acta Astronautica,2009,65(9):1306-1316. [38] MEGURO A,ISHIKAWA H,TSUJIHATA A. Study on ground verification for large deployable modular structures[J]. Journal of Spacecraft and Rockets,2006,43(4):780-787. [39] FISCHER A,PELLEGRINO S. Interaction between gravity compensation suspension system and deployable structure[J]. Journal of Spacecraft and Rockets,2000,37(1):93-99. [40] NECHYBA M C,XU Y. Human-robot cooperation in space:SM2 for new space station structure[J]. IEEE Robotics & Automation Magazine,1995,2(4):4-11. [41] XU Y,BROWN H B,FRIEDMAN M,et al. Control system of the self-mobile space manipulator[J]. IEEE Transactions on Control Systems Technology,1994,2(3):207-219. [42] BROWN H B,DOLAN J M. A novel gravity compensation system for space robots[C]//Proceedings of the ASCE specialty conference on robotics for challenging environments (Space94). New York,United States:ASCE,1994:250-258. [43] TAKANO T,NATORI M,MIYOSHI K. Characteristics verification of a deployable onboard antenna of 10 m maximum diameter[J]. Acta Astronautica,2002,51(11):771-778. [44] MEDZMARIASHVILI N,MEDZMARIASHVILI E,TSIGNADZE N,et al. Possible options for jointly deploying a ring provided with V-fold bars and a flexible pre-stressed center[J]. CEAS Space Journal,2013,5(3-4):203-210. [45] PROWALD J S,BAIER H. Advances in deployable structures and surfaces for large apertures in space[J]. CEAS Space Journal,2013,5(3-4):89-115. [46] National Microgravity Laboratory,Chinese Academy of Sciences,NMLC Overview[EB/OL].[2020-1-4]. http://nml.imech.ac.cn/info/detailnewsb.asp?infono=12351. [47] 张孝谦,袁龙根,吴文东,等. 国家微重力实验室百米落塔实验设施的几项关键技术[J]. 中国科学E辑,2005,35(5):523-534. ZHANG Xiaoqian,YUAN Longgen,WU Wendong,et al. Several key technologies of the national microgravity laboratory's 100-meter drop tower experimental facility[J]. Science in China,Ser. E,2005,35(5):523-534. [48] 叶介甫. 我国早期筹备宇航员训练始末[J]. 文史精华,2011(6):19-21. YE Jiefu. The beginning and end of China's early preparations for astronaut training[J]. Literary History,2011(6):19-21. [49] 姚燕生,梅涛. 空间操作的地面模拟方法-水浮法[J].机械工程学报,2008,44(3):182-188. YAO Yansheng,MEI Tao. Simulation method of space operation on the ground-buoyancy method[J]. Journal of Mechanical Engineering,2008,44(3):182-188. [50] 马爱军,闫利,徐水红,等. 国内外典型航天特因环境选拔训练设备及其应用[J]. 航天器环境工程,2019,36(2):103-111. MA Aijun,YAN Li,XU Shuihong,et al. Selection and training equipment for space special environment[J]. Spacecraft Environment Engineering,2019,36(2):103-111. [51] Northwestern Polytechnical University. Brief introduction of the key laboratory of aerospace dynamics technology[EB/OL].[2020-01-05]. http://kypt.nwpu.edu.cn/index.php?c=content&a=show&id=315. [52] 许剑,任迪,杨庆俊,等. 五自由度气浮仿真试验台的动力学建模[J]. 宇航学报,2010,31(1):60-64. XU Jian,REN Di,YANG Qingjun,et al. Dynamic modeling for the 5-dof air bearing spacecraft simulator[J]. Journal of Astronautics,2010,31(1):60-64. [53] 齐乃明,张文辉,高九州,等. 三维空间微重力地面模拟试验系统设计[J]. 机械工程学报,2011,47(9):16-20. QI Naiming,ZHANG Wenhui,GAO Jiuzhou,et al. Design of ground simulation test system for three-dimensional spatial microgravity environment[J]. Journal of Mechanical Engineering,2011,47(9):16-20. [54] 杨国永,王洪光,姜勇,等. 气浮试验台重力卸载精度分析[J]. 机械工程学报,2019,55(5):1-10. YANG Guoyong,WANG Hongguang,JIANG Yong,et al. Gravity unloading precision analysis of air bearing facility[J]. Journal of Mechanical Engineering,2019,55(5):1-10. [55] YANG G Y,WANG H G,XIAO J Z,et al. Research on a hierarchical and simultaneous gravity unloading method for antenna pointing mechanism[J]. Mechanical Sciences,2017,8(1):51-63. [56] YANG G Y,WANG H G,XIAO J Z,et al. Similarity analysis of antenna pointing mechanism running states in space and on the micro-gravity simulator[C]//6th Annual IEEE International Conference on Cyber Technology in Automation,Control and Intelligent Systems. Chengdu,China:IEEE,2016:77-81. [57] 赵明. 六自由度气浮台控制系统设计[D]. 哈尔滨:哈尔滨工业大学,2014. ZHAO Ming. Control system design of 6-dof airbearing spacecraft simulator[D]. Harbin:Harbin Institute of Technology,2014. [58] 孔令云,周凤岐. 用三轴气浮台进行混沌控制与反控制研究[J]. 宇航学报,2007,28(1):99-102. KONG Lingyun,ZHOU Fengqi. A study on the control and anti-control for chaos using 3-axis air bearing table[J]. Journal of Astronautics,2007,28(1):99-102. [59] 刘莹莹,周军,孙剑. 卫星多轴指向姿态控制全物理仿真实验研究[J]. 宇航学报,2006,27(4):790-793. LIU Yingying,ZHOU Jun,SUN Jian. Experiment research for satellites' multi-axis pointing attitude control[J]. Journal of Astronautics,2006,27(4):790-793. [60] 鲁兴举. 空间飞行器姿态控制仿真试验平台系统研究与设计[D]. 长沙:国防科学技术大学,2005. LU Xingju. Research and design of a space craft attitude control simulator system[D]. Changsha:National University of Defense Technology,2005. [61] 关富玲,刘亮. 四面体构架式可展开天线展开过程控制及测试[J]. 工程设计学报,2010,17(5):381-387. GUAN Fuling,LIU Liang. Deployment control and test of deployable tetrahedral truss antenna[J]. Chinese Journal of Engineering Design,2010,17(5):381-387. [62] ZHANG Y Q,LI N,YANG G G,et al. Dynamic analysis of the deployment for mesh reflector deployable antennas with the cable-net structure[J]. Acta Astronautica,2017,131:182-189. [63] 郭宏伟,刘荣强,邓宗全. 索杆铰接式伸展臂动力学建模与分析[J]. 机械工程学报,2011,47(9):66-71. GUO Hongwei,LIU Rongqiang,DENG Zongquan. Dynamic modeling and analysis of cable-strut deployable articulated mast[J]. Journal of Mechanical Engineering,2011,47(9):66-71. [64] 刘荣强,郭宏伟,邓宗全. 空间索杆铰接式伸展臂设计与试验研究[J]. 宇航学报,2009,30(1):315-320. LIU Rongqiang,GUO Hongwei,DENG Zongquan. Space cable-strut deployable articutlated mast design and experimental study[J]. Journal of Astronautics,2009,30(1):315-320. [65] 田大可. 模块化空间可展开天线支撑桁架设计与实验研究[D]. 哈尔滨:哈尔滨工业大学,2011. TIAN Dake. Design and experimental research on truss structure for modular space deployable antenna[D]. Harbin:Harbin Institute of Technology,2011. [66] 贺云,张飞龙,杨明毅,等. 卫星天线展开臂的随动吊挂重力补偿系统设计[J]. 机器人,2018,40(3):377-384. HE Yun,ZHANG Feilong,YANG Mingyi,et al. Design of tracking suspension gravity compensation system for satellite antenna deployable manipulator[J]. Robot,2018,40(3):377-384. [67] 张新邦,曾海波,张锦江,等. 航天器全物理仿真技术[J]. 航天控制,2015,33(5):72-78. ZHANG Xinbang,ZENG Haibo,ZHANG Jinjiang,et al. The physical simulation technology for spacecraft[J]. Aerospace Control,2015,33(5):72-78. [68] 张加波,王辉,李云,等. 基于真空负压吸附的太阳翼重力卸载技术[J]. 机械工程学报,2020,56(5):202-210. ZHANG Jiabo,WANG Hui,LI Yun,et al. Gravity compensation technology of solar array based on vacuum negative pressure adsorption[J]. Journal of Mechanical Engineering,2020,56(5):202-210. [69] SIRIGULENG B,ZHANG W,LIU T,et al. Vibration modal experiments and modal interactions of a large space deployable antenna with carbon fiber material and ring-truss structure[J]. Engineering Structures,2020:1-13. [70] 苏雯,杨淑琴,兰亚鹏,等. 星载大口径网状天线重力卸载研究[J]. 机械制造,2019,57(6):67-69. SU Wen,YANG Shuqin,LAN Yapeng,et al. Research on gravity unloading of spaceborne large diameter net antenna[J]. Machinery,2019,57(6):67-69. [71] 彭浩,何柏岩. 星载环形天线重力补偿新方法[J]. 中国机械工程,2019,30(4):379-384. PENG Hao,HE Baiyan. A new gravity compensation method of space-borne perimeter truss deployable reflectors[J]. China Mechanical Engineering,2019,30(4):379-384. [72] ZHAO Z H,FU K J,LI M,et al. Gravity compensation system of mesh antennas for in-orbit prediction of deployment dynamics[J]. Acta Astronautica,2020,167:1-13. [73] SABURO M. Micro-gravity experiments of space robotics and space-used mechanisms at Tokyo institute of technology[J]. Journal of Japan Society of Microgravity Application,2002,19(2):101-105. |
[1] | TIAN Dake, SHI Zuwei, JIN Lu, GUO Hongwei, LIU Rongqiang, SUN Zixiong. Design and Analysis of Cable Net Structure for Modular Hexagonal Prism Deployable Antenna [J]. Journal of Mechanical Engineering, 2024, 60(1): 262-273. |
[2] | TIAN Dake, GUO Zhenwei, JIN Lu, FAN Xiaodong, LIU Rongqiang. Deployment Dynamics Modeling and Motion Planning of Modular Deployable Antenna Mechanism [J]. Journal of Mechanical Engineering, 2023, 59(17): 56-66. |
[3] | TIAN Dake, GAO Haiming, JIN Lu, FAN Xiaodong, LIU Rongqiang, GUO Zhenwei, ZHAO Bingfeng. Design and Analysis of Multi-configuration Combined Modular Deployable Antenna Mechanism [J]. Journal of Mechanical Engineering, 2023, 59(13): 36-48. |
[4] | WANG Pengpeng, WANG Bo, SHI Tian, ZHENG Shikun, MA Xiaofei. Gravity Influence on Thermal Distortion of a Large Deployable Antenna [J]. Journal of Mechanical Engineering, 2021, 57(3): 69-76. |
[5] | DU Xuelin, DU Jingli, BAO Hong, ZHONG Wang, CUI Kai. Dynamic Analysis of Deployable Antennas Considering Truss Flexibility [J]. Journal of Mechanical Engineering, 2020, 56(7): 119-126. |
[6] | QIN Bo, Lü Shengnan, LIU Quan, DING Xilun. Structural Design and Analysis of a Deployable Parabolic-cylinder Antenna [J]. Journal of Mechanical Engineering, 2020, 56(5): 100-107. |
[7] | TIAN Dake, LIU Rongqiang, YANG Xieliu, DENG Zongquan. Deployment Accuracy Measurement and Analysis of Truss Structure for Modular Space Deployable Truss Antenna [J]. Journal of Mechanical Engineering, 2020, 56(5): 63-71. |
[8] | ZHANG Qian, LI Meng, JIANG Chao, CAI Jianguo, FENG Jian. Deployment Design of the Parabolic Solid Reflector Antenna Structure [J]. Journal of Mechanical Engineering, 2020, 56(5): 21-28. |
[9] | HUANG Guiping, MA Kaifeng, BAI Hongwu, MA Xiaofei, WANG Yong. Close-range Photogrammetry for Surface Thermal Deformation of Large-scale Deployable Antennas [J]. Journal of Mechanical Engineering, 2020, 56(11): 65-71. |
[10] | LIU Ruiwei, GUO Hongwei, LIU Rongqiang, TANG Dewei, WANG Hongxiang, DENG Zongquan. Dynamic Characteristics Analysis of Cable Net for Large Cable-rib Tension Deployable Antenna [J]. Journal of Mechanical Engineering, 2019, 55(12): 1-8. |
[11] | YANG Guigeng, YANG Dongwu, DU Jingli, ZHANG Shuxin. Method for Deployable Mesh Antenna Cable Network Structures’ Form-finding Design Based on Force Density [J]. Journal of Mechanical Engineering, 2016, 52(11): 34-41. |
[12] | ZHANG Yiqun;DUAN Baoyan;LI Tuanjie. Deployment Control Method for Flexible Deployable Antennas Based on FFT Filter [J]. , 2012, 48(3): 180-188. |
[13] | ZHANG Yiqun;DUAN Baoyan;LI Tuanjie. Integrated Design of Deployment Trajectory and Control System for Deployable Space Antennas [J]. , 2011, 47(9): 21-28. |
[14] | YANG Dongwu;BAO Hong. Force Balance Characteristics and Pretension Design of Asymmetric Cable Net Parabolic Antenna [J]. , 2009, 45(8): 308-312. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||