[1] HALL C, TRICARD M, MURAKOSHI H, et al. New mold manufacturing techniques[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2005, 5868:58680V.
[2] LEE S J, BAEK S S, KANG E S, et al. SiC Ceramics[J]. Rev. Adv. Mater. Sci., 2011, 28:21-25.
[3] AGARWAL S, RAO P V. Experimental investigation of surface/subsurface damage formation and material removal mechanisms in SiC grinding[J]. International Journal of Machine Tools & Manufacture, 2008, 48(6):698-710.
[4] SPUR G, HOLL S E. Ultrasonic assisted grinding of ceramics[J]. Journal of Materials Processing Technology, 1996, 62(4):287-293.
[5] 张建华,田富强,张明路,等. 微磨削与超声振动复合加工技术研究现状与展望[J]. 振动与冲击, 2016, 35(8):97-109. ZHANG Jianhua, TIAN Fuqiang, ZHANG Minglu, et al. Review of studies on micro-grinding and ultrasonic assisted machining[J]. Journal of Vibration and Shock, 2016, 35(8):97-109.
[6] 郑非非,张嘉桐,董志刚,等. 超声振动对单颗金刚石工具划擦RB-SiC的材料去除行为的影响[C]//2016年全国超声加工技术研讨会论文集,大连, 2016. ZHENG Feifei, ZHANG Jiatong, DONG Zhigang, et al. Influence of the ultrasonic vibration on the materialremoval rate in RB-SiC scratching test with asingle diamond tool[C]//Proceedings of the 2016 National Ultrasonic Processing Technology Symposium, Dalian, 2016.
[7] 曾亿江. 预压应力下工程陶瓷超声振动压痕和划痕试验研究[D]. 湘潭:湘潭大学, 2016. ZENG Yijiang. Experimental study of ultrasonic-assisted indentation and scratching of engineering ceramics at compressive pre-stressing[D]. Xiangtan:Xiangtan University, 2016.
[8] PENG Y, LIANG Z, WU Y, et al. Effect of vibration on surface and tool wear in ultrasonic vibration-assisted scratching of brittle materials[J]. International Journal of Advanced Manufacturing Technology, 2012, 59(1-4):67-72.
[9] GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics:Theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(3):375-389.
[10] RÜTTIMANN N, ROETHLIN M, BUHL S, et al. Simulation of hexa-octahedral diamond grain cutting tests using the SPH method[J]. Procedia CIRP, 2013, 8:322-327.
[11] ARIF M, RAHMAN M, SAN W Y. Analytical model to determine the critical feed per edge for ductile-brittle transition in milling process of brittle materials[J]. International Journal of Machine Tools & Manufacture, 2011, 51(3):170-181.
[12] BIFANO T G, FAWCETT S C. Specific grinding energy as an in-process control variable for ductile-regime grinding[J]. Precision Engineering, 1991, 13(4):256-262.
[13] 何玉辉,周群,郎献军. 轴向超声振动辅助磨削的磨削力研究[J]. 振动与冲击, 2016, 35(4):170-176. HE Yuhui, ZHOU Qun, LANG Xianjun. Study on grinding force of axial ultrasonic vibration assisted grinding[J]. Journal of Vibration and Shock, 2016, 35(4):170-176.
[14] 肖行志,郑侃,廖文和. 超声振动辅助磨削牙科氧化锆陶瓷切削力预测模型研究[J]. 振动与冲击, 2015, 34(12):140-145. XIAO Xingzhi, ZHENG Kan, LIAO Wenhe. Research on prediction model of cutting force in ultrasonic vibration assisted grinding of zirconia ceramics[J]. Journal of Vibration and Shock, 2015, 34(12):140-145. |