[1] TSUDA K, AIKEGAYA ISOBC K, KITAGAWA N, et al. Development of functionally graded sintered hard materials[J]. Powder Metallurgy, 1996, 39(4):300-304. [2] YEDDU H K, MALIKA A, ÅGRENA J, et al. Three-dimensional phase-field modeling of martensitic microstructure evolution in steels[J]. Acta Materialia, 2012, 60(4):538-1547. [3] MILITZER M. Phase field modeling of microstructure evolution in steels[J]. Current Opinion in Solid State and Materials Science, 2011, 15(3):106-115. [4] HOMER E R, TIKAREB V, HOLMC E A. Hybrid Potts-phase field model for coupled microstructuralcompositional evolution[J]. Computational Materials Science, 2013, 69:414-423. [5] WANG Q M, TAN L, LIU Z Q. Strength evaluation of unidirectional composites using Monte-Carlo simulation[J]. Applied Mechanics and Materials, 2014, 518:184-189. [6] DING H L, HE Y Z, LIU L F, et al. Cellualr Automata simulation of grain growth in three dimensions based on the lowest-energy principle[J]. Journal of Crystal Growth, 2006, 293(2):489-497. [7] HE Y Z, DING H L, LIU L F, et al. Computer simulation of 2D grain growth using a cellular automata model based on the lowest-energy principle[J]. Materials Science and Engineering:A, 2006, 429(1-2):236-246. [8] GEIGER J, ROOSZ A, BARKÓCZY P. Simulation of grain coarsening in two dimensions by cellular automaton[J]. Acta Materialia, 2001, 49(4):623-625. [9] MASON J K. Grain boundary energy and curvature in Monte Carlo and cellular automata simulations of grain boundary motion[J]. Acta Materialia, 2015, 94:162-171. [10] SUN Z Y, ZHAO X Y, MA J S. Characterization of microstructures in sisal fiber composites by Voronoi diagram[J]. Jounal of Reinforced Plastics and Composites, 2013, 32(1):16-22. [11] VOLOSHIN V P, BEAUFILS S, MEDVEDEV N N. Void space analysis of the structure of liquids[J]. Journal of Molecular Liquids, 2002, 96-97(S1):101-112. [12] GHOSH S, LIU Y. Voronoi cell finite element model based on micropolar theory of thermoelasticity for heterogeneous materials[J]. International Journal for Numerical Methods in Engineering, 1995, 38(8):1361-1398. [13] LIU Y, KAGEYAMA Y, MURAKAMI S. Creep fracture modeling by use of continuum damage variable based on Voronoi simulation of grain boundary cavity[J]. International Journal of Mechanical Sciences, 1998, 40(2-3):147-158. [14] BOLANDER J, SAITO S. Fracture analyses using spring networks with random geometry[J]. Engineering Fracture Mechanics, 1998, 61(5-6):569-591. [15] SUKUMAR N, SROLOVITZ D J. Finite element-based model for crack propagation in polycrystalline materials[J]. Computational & Applied Mathematics, 2004, 23(2-3):363-380. [16] XU X P, NEEDLEMAN A. Numerical simulations of fast crack growth in brittle solids[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(9):1397-1434. [17] ZHOU T T, HUANG C Z, LIU H L, et al. Crack propagation simulation in microstructure of ceramic tool materials[J]. Computional Materials Science, 2012, 54:150-156. [18] WANG D, ZHAO J, ZHOU Y H, et al. Extended finite element modeling of crack propagation in ceramic tool materials by considering the microstructural features[J]. Computational Materials Science, 2013, 77:236-244. [19] WANG D, ZHAO J, ZHAO J B, et al. Microstructure-level modeling and simulation of the flexural behavior of ceramic tool materials[J]. Computational Materials Science, 2014, 83:434-442. [20] ANONYMITY. High-speed materials design[J]. Science, 1997, 277(7):474-475. [21] MISHNAEVSKY JR L L. A new approach to the analysis of strength of matrix composites with high content of hard filler[J]. Appied Composite Materials, 1995, 1(4):317-324. [22] DONG M, SCHMAUDER S. Modeling of metal matrix composites by a self-consistent embedded cell model[J]. Acta Materialia, 1996, 44(6):2465-2478. |