REN Zhiwei, DU Jingli, ZI Bin, GUO Jiayuan. Surface Folding Design and Experiment of Satellite-borne Membrane Antennas Based on Origami Technology[J]. Journal of Mechanical Engineering, 2025, 61(21): 179-191.
[1] 段宝岩. 大型空间可展开天线的研究现状与发展趋势[J]. 电子机械工程,2017,33(1):1-14. DUAN Baoyan. The state-of-the-art and development trend of large space-borne deployable antenna[J]. Electro-Mechanical Engineering,2017,33(1):1-14. [2] 訾斌,赵嘉浩,王威,等. 大空间刚柔耦合机器人关键技术研究现状及发展趋势[J]. 机械工程学报,2024,60(23):21-42. ZI Bin,ZHAO Jiahao,WANG Wei,et al. Research progress and development trends in key technologies of large-scale rigid-flexible coupling robots[J]. Journal of Mechanical Engineering,2024,60(23):21-42. [3] 彭福军,谢超,张良俊. 面向空间应用的薄膜可展开结构研究进展及技术挑战[J]. 载人航天,2017,23(4):427-439. PENG Fujun,XIE Chao,ZHANG Liangjun. Advancement and technical challenges of deployable membrane structure in space application[J]. Manned Spaceflight,2017,23(4):427-439. [4] 王从思,韩如冰,王伟,等. 星载可展开有源相控阵天线结构的研究进展[J]. 机械工程学报,2016,52(5):107-123. WANG Congsi,HAN Rubing,WANG Wei,et al. Development of spaceborne deployable active phased array antennas[J]. Journal of Mechanical Engineering,2016,52(5):107-123. [5] HE B,JIA L,LI K,et al. Deployment dynamic modeling and driving schemes for a ring-truss deployable antenna[J]. Chinese Journal of Mechanical Engineering,2024,37:79. [6] LEE S,SHAH S I H,LEE H L,et al. Frequency- reconfigurable antenna inspired by origami flasher[J]. IEEE Antennas and Wireless Propagation Letters,2019,18(8):1691-1695. [7] ZHAO P,LIU J,WU C,et al. Novel surface design of deployable reflector antenna based on polar scissor structures[J]. Chinese Journal of Mechanical Engineering,2020,33:68. [8] WANG T,SANTER M J. An origami-based rigid- foldable parabolic reflector concept[C]//Proceedings of AIAA SCITECH 2022 Forum. San Diego:AIAA,2022:1885-1903. [9] TURNER N,GOODWINE B,SEN M. A review of origami applications in mechanical engineering[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2016,230(14):2345-2362. [10] HODGES R E,CHAHAT N,HOPPE D J,et al. A deployable high-gain antenna bound for Mars:Developing a new folded-panel reflectarray for the first CubeSat mission to Mars[J]. IEEE Antennas and Propagation Magazine,2017,59(2):39-49. [11] LIU Z Q,QIU H,LI X,et al. Review of large spacecraft deployable membrane antenna structures[J]. Chinese Journal of Mechanical Engineering,2017,30:1447-1459. [12] MIURA K. Method of packaging and deployment of large membranes in space[J]. The Institute of Space and Astronautical Science Report,1980,618(31):1-9. [13] WILSON L,PELLEGRINO S,DANNER R. Origami sunshield concepts for space telescopes[C]//Proc. of Structural Dynamics and Materials Conference. Boston:AIAA,2013:1594. [14] GUEST S D,PELLEGRINO S. A new concept for solid surface deployable antennas[J]. Acta Astronautica,1996,38(2):103-113. [15] YAO Yao,LI Guanghui,NING Xin. Origami electronic membranes as highly shape-morphable mechanical and environmental sensing systems[J]. Extreme Mechanics Letters,2024,73:102264. [16] YAO Shun,ZEKIOS Constantinos,GEORGAKOPOULOS Stavros. A rigidly foldable and reconfigurable thick origami antenna[J]. Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,2024,382:20240002. [17] SCHEEL H. Space-saving storage of flexible sheets:US,3848821A[P]. 1974. [18] GUEST S D,PELLEGRINO S. Inextensional wrapping of flat membranes[J]. Proceedings of the First International Seminar on Structural Morphology,1992,7-11:203-215. [19] WHITNEY D. Elastic spiral folding for flat membrane apertures[C]//Pacecraft Structures Conference 2014. USA:American Institute of Aeronautics and Astronautics,2014:105-115. [20] LANG R J,MANGLEBY S,HOWELL L. Single degree- of-freedom rigidly foldable cut origami flashers[J]. Journal of Mechanisms and Robotics,2016,8(3):031005. [21] ZIRBEL S A,LANG R J,THOMSON M W,et al. Accommodating thickness in origami-based deployable arrays[J]. Journal of Mechanical Design,2013,135(11):111005. [22] WANG Sen,GAO Yinghao,HUANG Hailin,et al. Design of deployable curved-surface rigid origami flashers[J]. Mechanism and Machine Theory,2022,167(1):1-17. [23] NOJIMA T. Modelling of facilely deployable folding/wrapping method of circular flat membranes by using origami (foldings in radial direction and wrapping by Archimedean spiral arrangement)[J]. Transactions of the Japan Society of Mechanical Engineers.C,2001,67(653):270. [24] CHEN Ziming,LIU Xingyu,YANG Xiao,et al. Design and analysis of a deployable parabolic structure based on six-crease thick-panel origami[J]. International Journal of Mechanical Sciences,2025,297-298:110352. [25] ZHAO Zhang,LI Junlan,WANG Cheng,et al. Design and optimization of kirigami-inspired rotational parabolic deployable structures[J]. International Journal of Mechanical Sciences,Volume 263,2024,108788. [26] MORGAN J,MAGLEBY S P,HOWELL L L. An approach to designing origami-adapted aerospace mechanisms[J]. Journal of Mechanical Design,2016,138(5):1-10. [27] PARQUE V,SUZAKI W,MIURA S,et al. Packaging of thick membranes using a multi-spiral folding approach:Flat and curved surfaces[J]. Advances in Space Research,2021,67(9):2589-2612. [28] CAI Jianguo,DENG Xiaowei,FENG Jian. Morphology analysis of a foldable kirigami structure based on Miura origami[J]. Smart Materials and Structures,2014,23(23):94011. [29] CAI Jianguo,DENG Xiaowei,FENG Jian,et al. Geometric design and mechanical behavior of a deployable cylinder with Miura origami[J]. Smart Materials and Structures,2015,24(12):125031. [30] 蔡建国,钟一涵,王立武,等. 圆柱形可展柔性结构高收纳比折叠展开方案[J]. 机械工程学报,2022,58(1):19-28. CAI Jianguo,ZHONG Yihan,WANG Liwu,et al. Deployment scheme of deployable cylindrical flexible structure with large storage ratio[J]. Journal of Mechanical Engineering,2022,58(1):19-28. [31] 杨振,张静,李盘浩,等. 基于折纸的圆柱及圆台薄膜折叠设计及分析[J]. 机械设计,2020,37(4):45-49. YANG Zhen,ZHANG Jing,LI Panhao,et al. Origami-inspired folding analysis on the membrane structure of the cylinder and the circular truncated cone[J]. Journal of Machine Design,2020,37(4):45-49. [32] TRAUTZ M,KÜNSTLER A. Deployable folded plate structures – folding patterns based on 4-fold-mechanism using stiff plates[C]//Proceedings of the International Association for Shell and Spatial Structures Symposium,2009:2306-2317. [33] PUJADA-GAMARRA E,ZENTNER L,LAVAYEN- FARFÁN D,et al. Analysis of the relative displacements in a thick origami with double-hinge technique for thickness accommodation[J]. Mechanism and Machine Theory,Volume 210,2025,106000. [34] TACHI T. Rigid-foldable thick origami[C]//Origami5:Fifth International Meeting of Origami Science,Mathematics,and Education,2011. [35] EDMONDSON B J,LANG R J,MAGLEBY S P,et al. An offset panel technique for thick rigidly foldable origami[C]//Proceedings of the ASME 2014 International Design Engineering Technical Conferences,2014. [36] ZIRBEL S A,WILSON M E,MAGLEBY S P,et al. An origami-inspired self-deployable array[C]//Smart Materials,Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers,2013:V1-V10. [37] GRESCHIK G,MIKULAS M. Design study of a square solar sail architecture[J]. Spacecraft Rockets,2002,39(5):653-661. [38] ARYA M,LEE N,PELLEGRINO S. Crease-free biaxial packaging of thick membranes with slipping folds[J]. International Journal of Solids and Structures,2017,108:24-39.