Morphological Design and Performance Analysis of a Self-reconfigurable Modular Robot for Multi-task Space Applications
AN Xiaokang1, JIA Qingxuan1, CHEN Gang1, LIU Yuqiang2, LIU Huawei2
1. School of Intelligent Engineering and Automation, Beijing University of Posts and Telecommunication, Beijing 100876; 2. Beijing Institute of Spacecraft System Engineering, Beijing 100094
AN Xiaokang, JIA Qingxuan, CHEN Gang, LIU Yuqiang, LIU Huawei. Morphological Design and Performance Analysis of a Self-reconfigurable Modular Robot for Multi-task Space Applications[J]. Journal of Mechanical Engineering, 2025, 61(21): 152-167.
[1] WANG Zhengwei,WANG Peng,DUAN Jinjun,et al. Review of on-orbit assembly technology with space robots[J]. Aerospace,2025,12(5):375. [2] GAO Y,CHINE S. Review on space robotics:Toward top-level science through space exploration[J]. Science Robotics,2017,2(7):eaan5074. [3] XUE Zhihui,LIU Jinguo,WU Chenchen,et al. Review of in-space assembly technologies[J]. Chinese Journal of Aeronautics,2021,34(11):21-47. [4] 戴野,张启昊,高语斐,等. 自重构模块化机器人模块设计综述[J]. 哈尔滨理工大学学报,2021,26(5):34-43. DAI Ye,ZHANG Qihao,Gao Yufei,et al. Review of module design for self-reconfigurable modular robots[J]. Journal of Harbin University of Science & Technology,2021,26(5):34-43. [5] KILIC C,MARTINEZ B,TATSCH C A,et al. NASA space robotics challenge 2 qualification round:An approach to autonomous lunar rover operations[J]. IEEE Aerospace and Electronic Systems Magazine,2021,36(12):24-41. [6] 陈钢,梁正宇,费军廷,等. 考虑拓扑-运动约束的模块化机器人自重构规划[J]. 华中科技大学学报(自然科学),2025(7):1-12. CHEN Gang,LIANG Zhengyu,FEI Junting et al. Self-reconfiguration planning for modular robots considering topology-motion constraints[J]. Journal of Huazhong University of Science & Technology (Natural Science Edition),2025(7):1-12. [7] 赵智远,杨晓航,徐梓淳,等. 新型SSRMS构型可重构空间机械臂的运动学奇异性分析[J]. 机械工程学报,2024,60(5):19-35. ZHAO Zhiyuan,YANG Xiaohang,XU Zichun,et al. Kinematic singularity analysis of a novel SSRMS-type reconfigurable space manipulator[J]. Journal of Mechanical Engineering,2024,60(5):19-35. [8] HU Jiaheng,WHITMAN J,TRAVERS M,et al. Modular robot design optimization with generative adversarial networks[C]//2022 International Conference on Robotics and Automation (ICRA). IEEE,2022:4282-4288. [9] HABIBIAN S,DADVAR M,PEYKARI B,et al. Design and implementation of a maxi-sized mobile robot (Karo) for rescue missions[J]. Robomech Journal,2021, 8(1):1. [10] ZHAO D,LAM T L. SnailBot:A continuously dockable modular self-reconfigurable robot using rocker-bogie suspension[C]//2022 International Conference on Robotics and Automation (ICRA). Philadelphia,PA,USA:IEEE,2022:4261-4267. [11] CH S S R,ABHIMANYU,GODIYAL R,et al. 2DxoPod-a modular robot for mimicking locomotion in vertebrates[J]. Journal of Intelligent & Robotic Systems,2021,101(1):1-16. [12] FENG Jingkai,LIU Jinguo. Configuration analysis of a chain-type reconfigurable modular robot inspired by normal alkane[J]. Science China Technological Sciences,2021,64(6):1167-1176. [13] SPROWITZ A,MOECKEL R,VESPIGNANI M,et al. Roombots:A hardware perspective on 3D self-reconfiguration and locomotion with a homogeneous modular robot[J]. Robotics and Autonomous Systems,2014,62(7):1016-1033. [14] QIAO Guifang,SONG Guangming,WANG Weiguo,et al. Design and implementation of a modular self-reconfigurable robot[J]. International Journal of Advanced Robotic Systems,2014,11(3):47. [15] 许毅,张雨来,斯云昊,等. 微小型仿蝗虫机器人设计及其无翻转跳跃运动实现[J]. 机械工程学报,2023,59(9):1-11. XU Yi,ZHANG Yulai,SI Yunhao,et al. Design of a small-scale locust-inspired robot and its realization of non-flip jumping motion[J]. Journal of Mechanical Engineering,2023,59(9):1-11. [16] LI Peng,NIE Zhenguo,LI Zihao,et al. Optimal design of the modular joint drive train for enhancing cobot load capacity and dynamic performance[J]. Chinese Journal of Mechanical Engineering,2024,37(1):57. [17] YAN Jialing,HU Gang,JIA Heming. et al. GPSOM:Group-based particle swarm optimization with multiple strategies for engineering applications[J]. Journal of Big Data,2025,12(1):1-40. [18] WANG Yuxing,WU Shuang,FU Haobo,et al. Curriculum-based co-design of morphology and control of voxel-based soft robots[C]//The Eleventh International Conference on Learning Representations. 2022. [19] BHATIA J,JACKSON H,TIAN Yunsheng,et al. Evolution gym:A large-scale benchmark for evolving soft robots[J]. Advances in Neural Information Processing Systems,2021,34:2201–2214. [20] MEDVET E,BARTOLO A,PIGOZZI F,et al. Biodiversity in evolved voxel-based soft robots[C]//Proceedings of the Genetic and Evolutionary Computation Conference. 2021:129-137. [21]PIGOZZI F,MEDVET E,BARTOLO A,et al. Factors impacting diversity and effectiveness of evolved modular robots[J]. ACM Transactions on Evolutionary Learning,2023,3(1):1-33. [22] 刘宏,李志奇,刘伊威,等. 天宫二号机械手关键技术及在轨试验[J]. 中国科学:技术科学,2018,48(12):1313-1320. LIU Hong,LI Zhiqi,LIU Yiwei,et al. Key technologies and on-orbit tests of Tiangong-2 robotic arm[J]. Scientia Sinica Technologica,2018,48(12):1313-1320. [23] TATSUO M,SATOH N,KUWAO F. Safety approach of Japanese experiment module remote manipulator system[C]//Proceedings of 5th International Symposium on Artificial Intelligence,Robotics and Automation in Space,1990:531-537. [24] MA Ou,WANG Jiegao,STRTHAK M,et al. On the validation of SPDM task verification facility[J]. Journal of Robotic Systems,2004,21(5):219-235. [25] MA Boyu,JIANG Zainan,LIU Yang,et al. Advances in space robots for on‐orbit servicing:A comprehensive review[J]. Advanced Intelligent Systems,2023,5(8):2200397. [26] 韩宇.面向人机交互的月面巡视器转移机构结构设计与力学特性分析[D]. 北京:北京邮电大学,2024. HAN Yu. Structural design and mechanical characteristics analysis of lunar rover transfer mechanism for human-robot interaction[D]. Beijing:Beijing University of Posts and Telecommunications,2024. [27] GU Tao,LI Sujian. Research on multi-level inventory optimization algorithm of repairable spare parts based on two improved differential evolution[J]. Journal of Mechanical Engineering,2020,56(14):245-253.