YANG Kai, TANG Xiaolin, ZHONG Guichuan, WANG Ming, LI Guofa, HU Xiaosong. Research on Safe Decision-making for Autonomous Driving at Unsignalized Intersections[J]. Journal of Mechanical Engineering, 2024, 60(10): 147-159.
[1] 李克强,戴一凡,李升波,等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报,2017,8(1):1-14. LI Keqiang,DAI Yifan,LI Shengbo,et al. State-of-the-artand technical trends of intelligent and connected vehicles[J]. Journal of Automotive Safety and Energy,2017,8(1):1-14. [2] BOARD N T S. Collision between vehicle controlled by developmental automated driving system and pedestrian[EB/OL]. [2023-04-14]. https://www.ntsb.gov/investigations/AccidentReports/Reports/HAR1903.pdf. [3] HO S S. Complementary and competitive framing of driverless cars:Framing effects,attitude volatility,or attitude resistance?[J]. International Journal of Public Opinion Research,2021,33(3):512-531. [4] BRITO B,AGARWAL A,ALONSO-MORA J. Learning interaction-aware guidance for trajectory optimization in dense traffic scenarios[J]. IEEE Transactions on Intelligent Transportation Systems,2022,22(10):18808-18821. [5] SCHWARTING W,ALONSO-MORA J,RUS D. Planning and decision-making for autonomous vehicles[J]. Annual Review of Control,Robotics,and Autonomous Systems,2018,1:187-210. [6] ZHANG M,LI N,GIRARD A,et al. A finite state machine based automated driving controller and its stochastic optimization[C]//Dynamic Systems and Control Conference. Tysons,Virginia,USA:ASME,2017:V002T07A002. [7] BUEHLER M,IAGNEMMA K,SINGH S. The DARPA urban challenge:Autonomous vehicles city traffic[M]. Berlin:Springer,2009. [8] 阳鑫,唐小林,杨凯,等. 极限工况下无人驾驶车辆运动规划策略研究[J]. 机械工程学报,2022,58(22):349-359. YANG Xin,TANG Xiaolin,YANG Kai,et al. Research on the motion planning strategy for autonomous vehicles in extreme conditions[J]. Journal of Mechanical Engineering,2022,58(22):349-359. [9] QIAN X,NAVARRO I,DE LA FORTELLE A,et al. Motion planning for urban autonomous driving using Bézier curves and MPC[C]//2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). Rio de Janeiro,Brazil:IEEE,2016:826-833. [10] HUANG Y,WANG H,KHAJEPOUR A,et al. A novel local motion planning framework for autonomous vehicles based on resistance network and model predictive control[J]. IEEE Transactions on Vehicular Technology,2019,69(1):55-66. [11] ZHANG C,STEINHAUSER F,HINZ G,et al. Traffic mirror-aware POMDP behavior planning for autonomous urban driving[C]//2022 IEEE Intelligent Vehicles Symposium (IV). Aachen:IEEE,2022:323-330. [12] QIAO Z,MUELLING K,DOLAN J,et al. Pomdp and hierarchical options mdp with continuous actions for autonomous driving at intersections[C]//2018 21st International Conference on Intelligent Transportation Systems (ITSC). Maui,HI:IEEE,2018:2377-2382. [13] BAI H,HSU D,LEE W S. Integrated perception and planning in the continuous space:A POMDP approach[J]. The International Journal of Robotics Research,2014,33(9):1288-1302. [14] BRECHTEL S,GINDELE T,DILLMANN R. Probabilistic decision-making under uncertainty for autonomous driving using continuous POMDPs[C]//17th International IEEE Conference on Intelligent Transportation Systems (ITSC). Qingdao:IEEE,2014:392-399. [15] ZHU Z,ZHAO H. A survey of deep RL and IL for autonomous driving policy learning[J]. IEEE Transactions on Intelligent Transportation Systems,2021,23(9):14043-14065. [16] ISELE D,RAHIMI R,COSGUN A,et al. Navigating occluded intersections with autonomous vehicles using deep reinforcement learning[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane,QLD,Australia:IEEE,2018:2034-2039. [17] TRAM T,JANSSON A,GRÖNBERG R,et al. Learning negotiating behavior between cars in intersections using deep Q-learning[C]//2018 21st International Conference on Intelligent Transportation Systems (ITSC). Maui,HI:IEEE,2018:3169-3174. [18] TREIBER M,HENNECKE A,HELBING D. Congested traffic states in empirical observations and microscopic simulations[J]. Physical Review E,2000,62(2):1805. [19] DABNEY W,OSTROVSKI G,SILVER D,et al. Implicit quantile networks for distributional reinforcement learning[C]//35th International Conference on Machine Learning (ICML). Stockholm:ACM,2018:1096-1105. [20] YANG D,ZHAO L,LIN Z,et al. Fully parameterized quantile function for distributional reinforcement learning[J]. Advances in Neural Information Processing Systems,2019,32:6193-6202. [21] VON NEUMANN J,MORGENSTERN O. Theory of games and economic behavior[M]. Princeton:Princefon Princeton University Press, 2007. [22] CHAPMAN M P,BONALLI R,SMITH K M,et al. Risk-sensitive safety analysis using conditional value-at-risk[J]. IEEE Transactions on Automatic Control,2021,67(12):6521-6536. [23] BERNHARD J,POLLOK S,KNOLL A. Addressing inherent uncertainty:Risk-sensitive behavior generation for automated driving using distributional reinforcement learning[C]//2019 IEEE Intelligent Vehicles Symposium (IV). Paris:IEEE,2019:2148-2155. [24] HOEL C J,WOLFF K,LAINE L. Tactical decision-making in autonomous driving by reinforcement learning with uncertainty estimation[C]//2020 IEEE Intelligent Vehicles Symposium (IV). Las Vegas:IEEE,2020:1563-1569. [25] HOEL C J,WOLFF K,LAINE L. Ensemble quantile networks:Uncertainty-aware reinforcement learning with applications in autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems,2023,24(6):6030-6041. [26] ZANELLI A,DOMAHIDI A,JEREZ J,et al. FORCES NLP:An efficient implementation of interior-point methods for multistage nonlinear nonconvex programs[J]. International Journal of Control,2020,93(1):13-29.