[1] 中华人民共和国应急管理部. 历史上五月发生的危险化学品事故[EB/OL].[2021-04-29]. https://www.mem.gov.cn/fw/jsxx/202104/t20210429_384168.shtml. Ministry of Emergency Management of the People's Republic of China. History of hazardous chemical accidents in May[EB/OL].[2021-04-29]. https://www.mem.gov.cn/fw/jsxx/202104/t20210429_384168.shtml. [2] 中华人民共和国应急管理部. 历史上六月发生的危险化学品事故[EB/OL].[2022-06-01]. https://www.mem.gov.cn/fw/jsxx/202206/t20220601_414799.shtml. Ministry of Emergency Management of the People's Republic of China. History of hazardous chemical accidents in June[EB/OL].[2022-06-01]. https://www.mem.gov.cn/fw/jsxx/202206/t20220601_414799.shtml. [3] 宋乐平,周毅,朱涛. 发动机机油冷却器泄漏分析及改进[J]. 内燃机与动力装置,2017,34(6):44-47,64. SONG Leping,ZHOU Yi,ZHU Tao. Engine oil cooler failure analysis and improvement[J]. Internal Combustion Engine & Powerplant,2017,34(6):44-47,64. [4] 徐世武,何澍春. 和谐型电力机车复合冷却器泄漏成因分析[J]. 铁道技术监督,2022,50(8):29-34,41. XU Shiwu,HE Shuchun. Analysis on the causes of leakage of compound cooler for harmonious electric locomotive[J]. Railway Quality Control,2022,50(8):29-34,41. [5] 张仕军,金振林. 基于多模型级联的双目视觉铸件缺陷检测方法[J]. 机械工程学报,2022,58(5):34-43. ZHANG Shijun,JIN Zhenlin. Casting defect detection method based on multi model cascade and binocular vision[J]. Journal of Mechanical Engineering,2022,58(5):34-43. [6] 胡琨,张树有,赵昕玥,等. 基于Contourlet变换的阴影恢复形貌方法及产品表面缺陷检测应用[J]. 机械工程学报,2018,54(6):102-109. HU Kun,ZHANG Shuyou,ZHAO Xinyue,et al. Defect detection based on contourlet-based shape from shading[J]. Journal of Mechanical Engineering,2018,54(6):102-109. [7] 周友行,马逐曦,石弦韦,等. HSI颜色空间下的直线导轨表面缺陷检测方法[J]. 中国机械工程,2019,30(18):2179-2184. HU Kun,ZHANG Shuyou,ZHAO Xinyue,et al. Defect detection method of linear guide surfaces based on HSI color space[J]. China Mechanical Engineering, 2019,30(18):2179-2184. [8] SU B,CHEN H,ZHU Y,et al. Classification of manufacturing defects in multicrystalline solar cells with novel feature descriptor[J]. IEEE Transactions on Instrumentation and Measurement,2019,68(12):4675-4688. [9] XU C,LI L,LI J,et al. Surface defects detection and identification of lithium battery pole piece based on multi-feature fusion and PSO-SVM[J]. IEEE Access,2021,9:85232-85239. [10] PARK C,CHOI S,WON S. Vision-based inspection for periodic defects in steel wire rod production[J]. Optical Engineering,2010,49(1):017202-017210. [11] TAO X,XU D,ZHANG Z,et al. Weak scratch detection and defect classification methods for a large-aperture optical element[J]. Optics Communications,2017,387:390-400. [12] SAIZ F A,SERRANO I,BARANDIARAN I,et al. A robust and fast deep learning-based method for defect classification in steel surfaces[C]//2018 International Conference on Intelligent Systems (IS),IEEE,Funchal,Portugal,2018:455-460. [13] YING Z,LIN Z,WU Z,et al. A modified-YOLOv5s model for detection of wire braided hose defects[J]. Measurement,2022,190:110683. [14] XU H,YAN Z,JI B,et al. Defect detection in welding radiographic images based on semantic segmentation methods[J]. Measurement,2022,188:110569. [15] LANG N,WANG D,CHENG P,et al. Virtual-sample-based defect detection algorithm for aluminum tube surface[J]. Measurement Science and Technology,2021,32(8):085001. [16] XIE X,LIU H,ZENG S,et al. A novel progressively undersampling method based on the density peaks sequence for imbalanced data[J]. Knowledge-Based Systems,2021,213:106689. [17] VUTTIPITTAYAMONGKOL P,ELYAN E. Neighbourhood-based undersampling approach for handling imbalanced and overlapped data[J]. Information Sciences,2020,509:47-70. [18] ZHENG M,LI T,ZHENG X,et al. UFFDFR:Undersampling framework with denoising,fuzzy c-means clustering,and representative sample selection for imbalanced data classification[J]. Information Sciences,2021,576:658-680. [19] TSAI C F,LIN W C,HU Y H,et al. Under-sampling class imbalanced datasets by combining clustering analysis and instance selection[J]. Information Sciences,2019,477:47-54. [20] GALAR M,FERNÁNDEZ A,BARRENECHEA E,et al. EUSBoost:Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling[J]. Pattern recognition,2013,46(12):3460-3471. [21] LU W,LI Z,CHU J. Adaptive ensemble undersampling-boost:A novel learning framework for imbalanced data[J]. Journal of systems and software,2017,132:272-282. [22] TAX D M J,DUIN R P W. Support vector data description[J]. Machine Learning,2004,54(1):45-66. [23] HO T K. The random subspace method for constructing decision forests[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(8):832-844. [24] AHMED N,NATARAJAN T,RAO K R. Discrete cosine transform[J]. IEEE transactions on Computers,1974,100(1):90-93. [25] 杨鑫华,贾昕,朱平,等. 基于信息增益率的点焊接头疲劳性能影响因素分析[J]. 焊接学报,2020,41(10):73-78,101-102. YANG Xinhua,JIA Xin,ZHU Ping,et al. Analysis of factors affecting fatigue performance of welded joints based on information gain rate[J]. Transactions of The China Welding Institution,2020,41(10):73-78,101-102. [26] VUTTIPITTAYAMONGKOL P,ELYAN E,PETRO-VSKI A. On the class overlap problem in imbalanced data classification[J]. Knowledge-based Systems,2021,212:106631. [27] DAS S,DATTA S,CHAUDHURI B B. Handling data irregularities in classification:Foundations,trends,and future challenges[J]. Pattern Recognition,2018,81:674-693. [28] RODRIGUEZ A,LAIO A. Clustering by fast search and find of density peaks[J]. Science,2014,344(6191):1492-1496. [29] CHAWLA N V,BOWYER K W,HALL L O,et al. SMOTE:Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research,2002,16:321-357. |