• CN:11-2187/TH
  • ISSN:0577-6686

›› 2012, Vol. 48 ›› Issue (15): 1-8.

• 论文 •    下一篇

扫码分享

基于预抓取模式识别的假手肌电控制方法

杨大鹏;赵京东;李楠;姜力;刘宏   

  1. 哈尔滨工业大学机器人技术与系统国家重点实验室
  • 发布日期:2012-08-05

Recognition of Hand Grasp Preshaping Patterns Applied to Prosthetic Hand Electromyography Control

YANG Dapeng;ZHAO Jingdong;LI Nan;JIANG Li;LIU Hong   

  1. State Key Laboratory of Robotics and System, Harbin Institute of Technology
  • Published:2012-08-05

摘要: 为解决多自由度假手肌电控制难题,建立一种人手预抓取模式的在线识别方法,并将其应用至HIT-DLR假手的抓取控制。基于Teager-Kaiser 能量算子增幅肌电信号在肌肉动作发起时的变化,引入后处理解决噪声影响,提出一种预抓取发起的在线检测方法。针对人手4种预抓取模式,讨论不同肌电信号分段方法,不同时域特征、频域特征和时频域特征以及多种分类方法所能获得的识别成功率。最终建立了基于波形长度及支持矢量机的最优识别方法,成功率可达95%,延迟小于300 ms。肌电控制试验表明,假手可以准确快速地抓取各种不同形状的物体。

关键词: 肌电控制, 假手, 模式识别, 预抓取

Abstract: It appears a big challenge when the multi-DOFs prosthetic hand is controlled by the electromyography (EMG) signals. A novel recognition method of the hand grasp preshaping patterns is proposed to the HIT-DLR prosthetic hand’s EMG control. A new online detection method is designed to collect the accurate onset EMG signals of the grasp preshaping, which uses the Teager-Kaiser energy (TKE) operator and post processing to enlarge the changes of the EMG signal and deal with the spike noise, respectively. Focusing on 4 types of the hand preshaping patterns, different data segmentation methods, different features coming from the time-domain, frequency domain and time-frequency domain, and various classifiers are attempted to find the best classification accuracy. The waveform length and support vector machine are chosen, which can reach an accuracy of 95% and a response time less than 300 ms. The experiment of the prosthetic hand control shows that the hand can swiftly grasp the objects with various shapes.

Key words: Electromyography control, Grasp preshaping, Pattern recognition, Prosthetic hand

中图分类号: