• CN:11-2187/TH
  • ISSN:0577-6686

›› 2002, Vol. 38 ›› Issue (4): 120-125.

• 论文 • 上一篇    下一篇

扫码分享

基于遗传算法的多资源作业车间智能动态优化调度

孙志峻;朱剑英;潘全科   

  1. 南京航空航天大学机电工程学院
  • 发布日期:2002-04-15

GENETIC ALGORITHM BASED APPROACH TO THE INTELLIGENT OPTIMUM SCHEDULING OF MULTI-RESOURCES IN THE DYNAMIC ENVIRONMENT

Sun Zhijun;Zhu Jianying;Pan Quanke   

  1. Nanjing University of Aeronautics and Astronautics
  • Published:2002-04-15

摘要: 提出一种基于遗传算法的调度算法,用于解决多资源制约(机床、工人和机器人)条件下作业车间的动态优化调度。为了表达加工工件的批量,提出了一种新的染色体基因型,基因型的长度随加工环境的变化而变化。研究的动态环境包括:加工工件连续不断地到来;机床设备突然损坏;损坏的机床被修复;工件的预定订货时间被提前;有新类型的工作要求被加工等等。采用一种基于周期和事件驱动的滚动窗口调度,以适应连续加工过程中的环境变化。调度算法中采用权重可变的双目标评价函数来优化调度结果。仿真结果表明该算法是可行的,与传统的静态优化调度相比,其优越性是明显的。

关键词: 动态作业车间调度, 多资源, 遗传算法

Abstract: Based on genetic agorithms (Gas),a scheduling approach is presented,which can be used to address the job shop scheduling problem in dynamic manufacturing systems constrained by machines, workers and robots. A new chromosome representation is also presented for batch process scheduling and its length is variable. In the dynamic environment,jobs arrive continuously,machines may be broken and repaired,due date of job may change,a new class job comes up during processing. Inspired by the rolling horizon optimization method from predictive control technology,a periodic and event-driven rolling horizon scheduling is utilized for adaptation to continuous processing in a changing environment. The algorithm takes into account dispatching rules with variable weights in the performance function. Simulation results show that the strategy is more suitable for a dynamic job shop environment than the static scheduling strategy.

Key words: Dynamic job-shop scheduling, Genetic algorithm, Multi-resources

中图分类号: