• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2019, Vol. 55 ›› Issue (15): 217-225.doi: 10.3901/JME.2019.15.217

• 机械动力学 • 上一篇    下一篇

扫码分享

基于最优控制迭代学习的直线伺服系统振动抑制研究

杨亮亮1,2,3, 王杰1,2, 王飞1,2, 史伟民1,2   

  1. 1. 浙江理工大学浙江省现代纺织装备技术重点实验室 杭州 310018;
    2. 浙江理工大学教育部现代纺织装备技术工程研究中心 杭州 310018;
    3. 杭州汇萃智能科技有限公司 杭州 310000
  • 收稿日期:2018-07-13 修回日期:2019-07-05 出版日期:2019-08-05 发布日期:2019-08-05
  • 通讯作者: 史伟民(通信作者),男,1965年出生,博士,教授,博士生导师。研究方向为机电系统设计。Email:swm@zstu.edu.cn
  • 作者简介:杨亮亮,男,1978年出生,副教授,硕士研究生导师。主要研究方向为高速高精运动控制。E-mail:yangliangilang@zstu.edu.cn;王杰,男,1995年出生,硕士研究生。主要研究方向为直线伺服系统的振动抑制。E-mail:beiwei36_5@126.com;王飞,男,1994年出生,硕士研究生。主要研究方向为高精度运动控制系统的前馈控制器设计。E-mail:wangfei1194938231@126.com
  • 基金资助:
    浙江省自然科学基金(LY18E050016)和国家重点研发计划(2017YFB1304000)资助项目。

Research on Vibration Suppression of Linear Servo System Based on Optimal Control Iterative Learning

YANG Liangliang1,2,3, WANG Jie1,2, WANG Fei1,2, SHI Weimin1,2   

  1. 1. Zhejiang Provincial Key Lab of Modern Textile Machinery & Technology, Zhejiang Sci-Tech University, Hangzhou 310018;
    2. The Research Center of Modern Textile Machinery Technology of the Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018;
    3. Hangzhou Huicui Intelligent Technology Co. Ltd., Hangzhou 310000
  • Received:2018-07-13 Revised:2019-07-05 Online:2019-08-05 Published:2019-08-05

摘要: 直线伺服系统在高速运动的过程中,会因自身存在的固有振动模态而产生显著的振荡,并影响其轨迹跟踪的性能。本文基于前馈与反馈二自由度控制策略,在稳定的反馈控制器基础上加入迭代学习控制算法,对该类控制算法的稳定性和收敛性进行了分析;同时基于最优控制理论,在驱动力迭代步长受约束的条件下引入拉格朗日算子,不仅增强了算法的鲁棒性,还提高了算法对收敛速度调节的灵活性;最后设计了一种基于最优控制迭代学习的控制器。仿真与实验结果表明,在前馈及反馈二自由度控制的基础上加入最优控制迭代学习的算法,可以有效抑制直线伺服系统在高速运行过程中产生的振动现象,在匀速段的抑制效果尤为显著,从而提高了整体轨迹的跟踪性能。

关键词: 迭代学习, 拉格朗日算子, 直线伺服系统, 最优控制

Abstract: In the process of high-speed motion, linear servo system will produce significant oscillation due to its inherent natural vibration mode and affect its trajectory tracking performance. Based on the feedforward and feedback two-degree-of-freedom control strategy, this paper adds an iterative learning control algorithm based on the stable feedback controller, and analyzes the stability and convergence of the iterative learning control algorithm. At the same time,the Lagrangian is introduced under the condition that the iterative step size is constrained by the optimal control theory,which not only enhanced the robustness of the algorithm, but also improves the flexibility of the algorithm for adjusting the convergence speed. Finally,a controller based on optimal control iterative learning is designed. The simulation and experimental results show that the algorithm of optimal control iterative learning is added to the feedforward and feedback two-degree-of-freedom control, which can effectively suppress the vibration phenomenon generated by the linear servo system during high-speed operation. Significant, thereby improving the tracking performance of the overall trajectory.

Key words: iterative learning, Lagrangian, linear servo system, optimal control

中图分类号: