• CN:11-2187/TH
  • ISSN:0577-6686

›› 2011, Vol. 47 ›› Issue (17): 44-49.

• 论文 • 上一篇    下一篇

扫码分享

滚动轴承故障特征的时间—小波能量谱提取方法

张进;冯志鹏;褚福磊   

  1. 清华大学精密仪器与机械学系;北京科技大学车辆工程研究所
  • 发布日期:2011-09-05

Extraction of Rolling Bearing Fault Feature Based on Time-wavelet Energy Spectrum

ZHANG Jin; FENG Zhipeng; CHU Fulei   

  1. Department of Precision Instrument and Mechanology, Tsinghua University Institute of Vehicular Engineering, University of Science and Technology Beijing
  • Published:2011-09-05

摘要: 振动信号中的周期性冲击现象是诊断滚动轴承各元件故障的重要依据之一,针对滚动轴承故障特征,在小波变换理论基础上提出一种时间—小波能量谱信号处理方法,它能够有效地提取出振动信号中冲击成分的时域和频域特征。利用时间—小波能量谱方法分析正常、外圈故障、内圈故障、滚珠故障等四种状态下滚动轴承的振动信号,并与传统的包络解调分析方法进行对比分析。时间—小波能量谱不仅可以有效提取出冲击特征明显的滚动轴承外圈故障,还能提取出内圈、滚珠等信号特征微弱的滚动轴承故障,而包络解调分析方法只能提取出外圈故障特征而不能提取出滚珠故障、内圈故障特征。结果表明,时间—小波能量普比包络解调分析方法更能有效地提取出振动信号中的冲击信号成分。

关键词: 故障诊断, 滚动轴承, 时间—小波能量谱, 小波变换

Abstract: Periodic impulse in vibration signals is one of the key indicators to diagnose localized damage of bearing elements. A new method, so called time-wavelet energy spectrum, is proposed for rolling element bearing fault diagnosis. The feature of periodic impulses in both time domain and frequency domain can be extracted effectively by this method. This method is applied to analyzing the vibration signals of bearings under normal and faulty (with damage on outer race, inner race and ball respectively) statuses, and its performance is compared with the traditional envelope demodulation method. It is found that the time-wavelet energy spectrum is more effective in extracting the periodic impulses features produced by localized bearing damage than the envelope demodulation analysis. It can not only extract the relatively significant fault feature of outer race damage, but also extract the weaker fault features of inner race damage and ball damage.

Key words: Fault diagnosis, Rolling element bearing, Time-wavelet energy spectrum, Wavelet transform

中图分类号: