• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2018, Vol. 54 ›› Issue (5): 19-28.doi: 10.3901/JME.2018.05.019

• 机构学及机器人 • 上一篇    下一篇

扫码分享

上肢康复外骨骼的设计与人机相容性分析

张雷雨1, 李剑锋1, 刘钧辉1, 侯增广2, 彭亮2, 王卫群2   

  1. 1. 北京工业大学机械工程与应用电子技术学院 北京 100124;
    2. 中科院自动化所复杂系统管理与控制国家重点实验室 北京 100190
  • 收稿日期:2017-08-15 修回日期:2017-12-31 出版日期:2018-03-05 发布日期:2018-03-05
  • 通讯作者: 李剑锋(通信作者),男,1964年出生,教授,博士研究生导师。主要研究方向为机器人机构学和穿戴外骨骼技术。E-mail:lijianfeng@bjut.edu.cn
  • 作者简介:张雷雨,男,1988年出生,博士,讲师。主要研究方向为上肢康复机器人及下肢柔性助力设备。E-mail:zhangleiyu1988@126.com
  • 基金资助:
    国家自然科学基金(51705007,51675008)、北京市自然科学基金(3171001)、中国博士后科学基金(2016M600021)和北京市博后基金(2017-ZZ-038)资助项目。

Design and Human-machine Compatibility Analysis of Co-Exos for Upper-limb Rehabilitation

ZHANG Leiyu1, LI Jianfeng1, LIU Junhui1, HOU Zengguang2, PENG Liang2, WANG Weiqun2   

  1. 1. College of Mechanical and Electrical Engineering, Beijing University of Technology, Beijing 100124;
    2. State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190
  • Received:2017-08-15 Revised:2017-12-31 Online:2018-03-05 Published:2018-03-05

摘要: 对于上肢运动障碍的脑卒中患者,上肢康复外骨骼是弥补人工康复训练不足、降低医师工作强度的关键设备。针对盂肱关节的瞬变转心属性,采用高等机构学理论,对上肢康复外骨骼进行构型综合,综合出多种肩关节环链Θs和肘前臂环链Θef构型组合,基于构型优选原则,遴选出人机相容性较好的兼容型外骨骼构型。在此基础上,设计并研制含重力平衡系统的上肢康复外骨骼Co-Exos,将弹性元件引入被动滑动副,以改善引入被动关节而产生的不确定性和运动协同性。基于盂肱关节的运动学模型,建立了肩关节环链Θs的人机相容性模型,同时,提出一种追踪和补偿盂肱关节竖直方向位移的方法,将外骨骼Co-Exos与上臂简化为变杆长的导杆机构,推导出被动副的运动学模型。搭建人机相容性试验平台,测量人体上肢在抬升过程中被动副的位移曲线,通过与被动副的理论位移曲线对比可知,肩关节环链Θs和兼容型人机闭链均可补偿与追踪盂肱关节大部分空间位移变化,尤其对竖直方向位移补偿效果最佳,因此,外骨骼Co-Exos与人体上肢具有较好的人机相容性。

关键词: 被动关节, 构型综合, 脑卒中, 人机相容性, 上肢康复外骨骼, 盂肱关节

Abstract: The upper-limb rehabilitation exoskeleton is a critical equipment for stroke patients with the motor function disorder. The exoskeleton devices are used to make up deficiencies of the manual rehabilitation training and reduce the workload of rehabilitation physicians. The configuration synthesis of the exoskeleton is conducted using the advanced mechanisms theory. Besides, the mobilization of the glenohumeral joint (GH) is taken into account. Several configuration combination of the shoulder chain Θs and the elbow-forearm chain Θef are obtained. According to optimum principles of configuration a configuration with preferable human-machine compatibility is selected. Then, the compatible exoskeleton (Co-Exos) for the upper-limb rehabilitation is designed and developed. A gravity balance system and elastic components are introduced into Co-Exos for improving the uncertainty and motion cooperativity. The human-machine compatibility model of the shoulder chain Θs is established based on the kinematic model of GH. Meanwhile, an approach is proposed to compensate the vertical displacements of GH. The Co-Exos and the upper arm can be simplified as a guide-bar mechanism. The kinematic models of passive joints are deduced. Furthermore, the human-machine compatibility platform is constructed to measure the displacements of passive joints. Though comparing measured displacements with theoretical displacements, it can be found that the shoulder chain Θs and the compatible human-machine chain can can compensate the position changes of GH mostly, especially the vertical displacements. Hence Co-Exos has good human-machine compatibility for GH.

Key words: configuration synthesis, glenohumeral joint, human-machine compatibility, passive joint, stroke, upper-limb rehabilitation exoskeleton

中图分类号: