机械工程学报 ›› 2025, Vol. 61 ›› Issue (18): 344-365.doi: 10.3901/JME.2025.18.344
• 交叉与前沿 • 上一篇
孟德彪1,2, 杨恒飞1,2, 杨世源3, 苏晓燕4, 朱顺鹏1
收稿日期:2024-10-12
修回日期:2025-03-25
发布日期:2025-11-08
作者简介:孟德彪(通信作者),男,1985年出生,博士,副教授,硕士研究生导师。主要研究方向为不确定性量化和可靠性评估、复杂系统建模、基于不确定性的设计优化。E-mail:dbmeng@uestc.edu.cn;杨恒飞,男,2000年出生。主要研究方向为可靠性分析、可靠性设计优化。E-mail:202321040145@std.uestc.edu.cn;杨世源,男,1998年出生,博士研究生。主要研究方向为可靠性分析、可靠性设计优化。E-mail:up202311575@edu.fe.up.pt;苏晓燕,女,1986年出生,博士,副教授。主要研究方向为信息融合、不确定信息处理、复杂系统关联分析、人因可靠性分析。E-mail:suxiaoyan@shiep.edu.cn;朱顺鹏,男,1983年出生,博士,教授,博士研究生导师。主要研究方向为结构完整性评定、失效物理可靠性分析、疲劳强度与可靠性设计、损伤容限与寿命预测。E-mail:zspeng2007@uestc.edu.cn
基金资助:MENG Debiao1,2, YANG Hengfei1,2, YANG Shiyuan3, SU Xiaoyan4, ZHU Shunpeng1
Received:2024-10-12
Revised:2025-03-25
Published:2025-11-08
摘要: 结构可靠性分析对于保障工程装备安全可靠运行至关重要。传统的一阶可靠性方法及其改进算法精度受限于极限状态函数的类型与梯度信息,往往无法适用于复杂工程案例。面对日益复杂的工程场景,虽然多保真度模型的建立策略被广泛研究,但在可靠性分析中,其应用潜力尚有待进一步开发。为此,发展一种自适应多保真度Kriging(Multi-fidelity Kriging,MF-Kriging)模型辅助的一阶可靠性分析方法。首先,通过增广拉格朗日函数将一阶可靠性分析问题转化为无约束优化问题,从而使其能够采用启发式优化算法求解。其次,通过融合多个数据源进行自适应MF-Kriging建模,以进一步降低可靠性分析的计算成本。基于该可靠性分析方法,任意自适应MF-Kriging建模策略不论是全局搜索或者是局部搜索均可嵌套使用。另外,考虑到一阶可靠性方法的重要步骤之一是精确定位设计验算点(Most probable point,MPP),提出一种混合MF-Kriging建模策略。通过权衡全局搜索策略和基于迭代MPP邻域的局部搜索策略,平衡可靠性分析的局部精确度以及全局收敛性。最后,利用四个数学算例和三个工程案例对所提出方法进行了应用。结果表明,该可靠性分析方法在精度、效率和鲁棒性方面均具有显著优势。
中图分类号:
孟德彪, 杨恒飞, 杨世源, 苏晓燕, 朱顺鹏. 自适应多保真度Kriging模型辅助的一阶可靠性分析方法[J]. 机械工程学报, 2025, 61(18): 344-365.
MENG Debiao, YANG Hengfei, YANG Shiyuan, SU Xiaoyan, ZHU Shunpeng. Adaptive Multi-fidelity Kriging Model-assisted First-order Reliability Analysis Method[J]. Journal of Mechanical Engineering, 2025, 61(18): 344-365.
| [1] LI X Q,SONG L K,BAI G C. Recent advances in reliability analysis of aeroengine rotor system:A review[J]. International Journal of Structural Integrity,2022,13(1):1-29. [2] 韦新鹏,姚中洋,宝文礼,等. 一种基于主动学习克里金模型的证据理论可靠性分析方法[J]. 机械工程学报,2024,60(2):356-368. WEI Xinpeng,YAO Zhongyang,BAO Wenli,et al. An evidence theory reliability analysis method based on active learning Kriging model[J]. Journal of Mechanical Engineering,2024,60(2):356-368. [3] HE Y,DENG Y. MMGET:A Markov model for generalized evidence theory[J]. Computational and Applied Mathematics,2022,41:1-41. [4] MENG D,YANG S,HE C,et al. Multidisciplinary design optimization of engineering systems under uncertainty:A review[J]. International Journal of Structural Integrity,2022,13(4):565-593. [5] 聂鹏,杨世源,郭永强,等.氢环境下金属材料的疲劳寿命预测:从裂纹的角度[J].长沙理工大学学报(自然科学版),2024,21(4):44-67. NIE Peng,YANG Shiyuan,GUO Yongqiang,et al. Prediction of fatigue life of metallic materials in hydrogen environment:A crack perspective[J]. Journal of Changsha University of Science & Technology (Natural Science),2024,21(4):44-67. [6] WANG Z,XIAO F,CAO Z. Uncertainty measurements for Pythagorean fuzzy set and their applications in multiple-criteria decision making[J]. Soft Computing,2022,26(19):9937-9952. [7] QIANG C,DENG Y. A new correlation coefficient of mass function in evidence theory and its application in fault diagnosis[J]. Applied Intelligence,2022,52(7):7832-7842. [8] LUO C,KESHKEGAR B,ZHU SP,et al. Hybrid enhanced Monte Carlo simulation coupled with advanced machine learning approach for accurate and efficient structural reliability analysis[J]. Computer Methods in Applied Mechanics and Engineering,2022,388:114218. [9] 刘泽清,程鑫,杨旭锋. 基于ALK模型与子集模拟的主动学习可靠性分析方法[J]. 机械强度,2024,46(1):96-106. LIU Zeqing,CHENG Xin,YANG Xufeng. Active learning reliability analysis method based on ALK model and subset simulation[J]. Journal of Mechanical Strength,2024,46(1):96-106. [10] 智鹏鹏,汪忠来,李永华,等. 基于RMQGS-APS- Kriging的主动学习结构可靠性分析方法[J]. 机械工程学报,2022,58(16):420-429. ZHI Pengpeng,WANG Zhonglai,LI Yonghua,et al. An active learning structural reliability analysis method based on RMQGS-APS-Kriging[J]. Journal of Mechanical Engineering,2022,58(16):420-429. [11] PAPAIOANNOU I,STRAUB D. Combination line sampling for structural reliability analysis[J]. Structural Safety,2021,88:102025. [12] KESHTEGAR B,SEGHIER M E A B,ZHU S P,et al. Reliability analysis of corroded pipelines:Novel adaptive conjugate first order reliability method[J]. Journal of Loss Prevention in the Process Industries,2019,62:103986. [13] HU Z,MANSOUR R,OLSSON M,et al. Second-order reliability methods:A review and comparative study[J]. Structural and Multidisciplinary Optimization,2021,64:3233-3263. [14] 郝鹏,杨浩,陈发鑫,等. 考虑载荷及强度不确定性的结构安全系数精细化设计方法[J]. 机械工程学报,2024,60(13):182-192. HAO Peng,YANG Hao,CHEN Faxin,et al. A precise design method for structural safety factor considering load and strength uncertainty[J]. Journal of Mechanical Engineering,2024,60(13):182-192. [15] MENG D,XIE T,WU P,et al. Uncertainty-based design and optimization using first order saddle point approximation method for multidisciplinary engineering systems[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems,Part A:Civil Engineering,2020,6(3):04020028. [16] XIA Y,HU Y,TANG F,et al. An Armijo-based hybrid step length release first order reliability method based on chaos control for structural reliability analysis[J]. Structural and Multidisciplinary Optimization,2023,66(4):77. [17] LI Gang,BIN Li,HAO Hu. A novel first-order reliability method based on performance measure approach for highly nonlinear problems[J]. Structural and Multidisciplinary Optimization,2018,57:1593-1610. [18] KESHKEGAR B,CHAKRABORTY S. A hybrid self-adaptive conjugate first order reliability method for robust structural reliability analysis[J]. Applied Mathematical Modelling,2018,53:319-332. [19] ZHAO W,CHEN Y,LIU J. An effective first order reliability method based on Barzilai-Borwein step[J]. Applied Mathematical Modelling. 2020,77:1545-1563. [20] ZHANG D,ZHANG J,YANG M,et al. An enhanced finite step length method for structural reliability analysis and reliability-based design optimization[J]. Structural and Multidisciplinary Optimization,2022,65(8):231. [21] GHOHANI Arab H,RASHKI M,ROSTAMIAN M,et al. Refined first-order reliability method using cross- entropy optimization method[J]. Engineering with Computers,2019,35:1507-1519. [22] LIU X,LI T,ZHOU Z,et al. An efficient multi-objective reliability-based design optimization method for structure based on probability and interval hybrid model[J]. Computer Methods in Applied Mechanics and Engineering,2022,392:114682. [23] MENG Z,LI G,WANG X,et al. A comparative study of metaheuristic algorithms for reliability-based design optimization problems[J]. Archives of Computational Methods in Engineering,2021,28:1853-1869. [24] ZHU S P,BEHROOZ K,AMINE E M S B,et al. Hybrid and enhanced PSO:Novel first order reliability method- based hybrid intelligent approaches[J]. Computer Methods in Applied Mechanics and Engineering,2022,393:114730. [25] PEDROSO M D. Form reliability analysis using a parallel evolutionary algorithm[J]. Structural Safety,2017,65:84-99. [26] ZHONG C,WANG M,DANG C,et al. First-order reliability method based on Harris hawks optimization for high-dimensional reliability analysis[J]. Structural and Multidisciplinary Optimization,2020,62(4):1951-1968. [27] YANG K,XUE B,FANG H,et al. Mechanical sensitivity analysis of pipe-liner composite structure under multi- field coupling[J]. Structures,2021,29:484- 493. [28] LIU X,LIU X,ZHOU Z,et al. An efficient multi- objective optimization method based on the adaptive approximation model of the radial basis function[J]. Structural and Multidisciplinary Optimization,2021,63:1385-1403. [29] YU S,WANG Z,LI Y. Time and space-variant system reliability analysis through adaptive Kriging and weighted sampling[J]. Mechanical Systems and Signal Processing,2022,166:108443. [30] WANG W,MA Y,LIU B,et al. Reliability analysis of reusable turbine rotor blisk:An application of parametric modelling method under multi-field coupling[J]. Engineering Failure Analysis,2023,152:107511. [31] AI Q,YUAN Y,JIANG X,et al. Pathological diagnosis of the seepage of a mountain tunnel[J]. Tunnelling and Underground Space Technology,2022,128:104657. [32] LI C,HUANG M,LI W,et al. Optimization of an induction motor for loss reduction considering manufacturing tolerances[J]. Structural and Multidisciplinary Optimization,2022,65(7):187. [33] LI Y,LI C,GARG A,et al. Heat dissipation analysis and multi-objective optimization of a permanent magnet synchronous motor using surrogate assisted method[J]. Case Studies in Thermal Engineering,2021,27:101203. [34] WANG Z,ZHAO D,GUAN Y. Flexible-constrained time-variant hybrid reliability-based design optimization[J]. Structural and Multidisciplinary Optimization,2023,66(4):89. [35] LUO C,KESHTEGAR B,ZHU S P,et al. EMCS-SVR:Hybrid efficient and accurate enhanced simulation approach coupled with adaptive SVR for structural reliability analysis[J]. Computer Methods in Applied Mechanics and Engineering,2022,400:115499. [36] MENG D,YANG S,YANG H,et al. Intelligent-inspired framework for fatigue reliability evaluation of offshore wind turbine support structures under hybrid uncertainty[J]. Ocean Engineering,2024,307:118213. [37] 胡伟飞,廖家乐,郭云飞,等. 基于物理信息神经网络的时变可靠性分析方法[J]. 机械工程学报,2024,60(13):141-153. HU Weifei,LIAO Jiale,GUO Yunfei,et al. Time-varying reliability analysis method based on physical information neural network[J]. Journal of Mechanical Engineering,2024,60(13):141-153. [38] CHERID D,BOURAHLA N,LAGHOUB M S,et al. Sensor number and placement optimization for detection and localization of damage in a suspension bridge using a hybrid ANN-PCA reduced FRF method[J]. International Journal of Structural Integrity,2022,13(1):133-149. [39] 王攀,辛富康,邓亚权,等. 基于自适应神经网络的多模式小失效概率分析方法[J]. 机械工程学报,2022,58(23):39-50. WANG Pan,XIN Fukang,DENG Yaquan,et al. A multi-mode small failure probability analysis method based on adaptive neural network[J]. Journal of Mechanical Engineering,2022,58(23):39-50. [40] LI M,SADOUGHI M,HU Z,et al. A hybrid Gaussian process model for system reliability analysis[J]. Reliability Engineering & System Safety,2020,197:106816. [41] WANG Y,ZHANG C,SU Y,et al. Structure optimization of the frame based on response surface method[J]. International Journal of Structural Integrity,2020,11(3):411-425. [42] ZHOU Y,LU Z,YUN W. Active sparse polynomial chaos expansion for system reliability analysis[J]. Reliability Engineering & System Safety,2020,202:107025. [43] TONG C,ZHANG Q,CUI C,et al. An efficient latent map multi-fidelity Kriging model and adaptive point- selected strategy for reliability analysis with time- consuming simulations[J]. Structural and Multidisciplinary Optimization,2024,67(5):71. [44] MENG D,YANG H,YANG S,et al. Kriging-assisted hybrid reliability design and optimization of offshore wind turbine support structure based on a portfolio allocation strategy[J]. Ocean Engineering,2024,295:116842. [45] 余萌晨,龙湘云. 基于两阶段主动学习Kriging模型的广义概率区间混合可靠性分析[J]. 机械工程学报,2022,58(6):274-288. YU Mengchen,LONG Xiangyun. Generalized probabilistic interval hybrid reliability analysis based on two-stage active learning Kriging model[J]. Journal of Mechanical Engineering,2022,58(6):274-288. [46] YU S,LI Y. Active learning Kriging model with adaptive uniform design for time-dependent reliability analysis[J]. IEEE Access,2021,9:91625-91634. [47] YANG M,ZHANG D,WANG F,et al. Efficient local adaptive Kriging approximation method with single-loop strategy for reliability-based design optimization[J]. Computer Methods in Applied Mechanics and Engineering,2022,390:114462. [48] XIONG Y,SAMPATH S. A fast-convergence algorithm for reliability analysis based on the AK-MCS[J]. Reliability Engineering & System Safety,2021,213:107693. [49] ZHANG X,LU Z,CHENG K. AK-DS:An adaptive Kriging-based directional sampling method for reliability analysis[J]. Mechanical Systems and Signal Processing,2021,156:107610. [50] QIN Qiang,CAO Xiaolei,ZHANG Shengpeng. AWK- TIS:An improved AK-IS based on whale optimization algorithm and truncated importance sampling for reliability analysis[J]. CMES-Computer Modeling in Engineering & Sciences,2023,135(2):1457-1480. [51] HUANG X,CHEN J,ZHU H. Assessing small failure probabilities by AK-SS:An active learning method combining Kriging and Subset Simulation[J]. Structural Safety,2016,59:86-95. [52] 安永凯,张岩祥,闫雪嫚. 基于自适应多保真度Co-Kriging代理模型的地下水污染源反演识别[J]. 中国环境科学,2024,44(3):1376-1385. AN Yongkai,ZHANG Yanxiang,YAN Xueman. Inversion and identification of groundwater pollution sources based on adaptive multi-fidelity Co-Kriging surrogate model[J]. China Environmental Science,2024,44(3):1376-1385. [53] 黎程山,吕达,安小逸,等. 翼身融合水下滑翔机耐压舱固定架多保真度优化设计[J]. 中国舰船研究,2024,19(16):126-134. LI Chengshan,LYU Da,AN Xiaoyi,et al. Multi-fidelity optimization design of the fixed frame of the pressure cabin of the blended wing-body underwater glider[J]. Chinese Journal of Ship Research,2024,19(16):126-134. [54] XIAO M,ZHANG G,BREITKOPF P,et al. Extended Co-Kriging interpolation method based on multi-fidelity data[J]. Applied Mathematics and Computation,2018,323:120-131. [55] ULAGANATHAN S,COUCKUYT I,FERRANTI F,et al. Performance study of multi-fidelity gradient enhanced Kriging[J]. Structural and Multidisciplinary Optimization,2015,51:1017-1033. [56] ZHOU Q,WU Y,GUO Z,et al. A generalized hierarchical co-Kriging model for multi-fidelity data fusion[J]. Structural and Multidisciplinary Optimization,2020,62:1885-1904. [57] YI J,CHENG Y,LIU J. A novel fidelity selection strategy-guided multi-fidelity Kriging algorithm for structural reliability analysis[J]. Reliability Engineering & System Safety,2022,219:108247. [58] 杨旭锋,程鑫,刘泽清. 一种融合交叉熵自适应抽样与ALK模型的可靠性分析方法[J]. 机械工程学报,2024,60(16):73-82. YANG Xufeng,CHENG Xin,LIU Zeqing. A reliability analysis method combining cross entropy adaptive sampling and ALK model[J]. Journal of Mechanical Engineering,2024,60(16):1-10. [59] ZHU S P,KESHTEGAR B,CHAKRABORTY S,et al. Novel probabilistic model for searching most probable point in structural reliability analysis[J]. Computer Methods in Applied Mechanics and Engineering,2020,366:113027. [60] BARBOSA M P F,RADE D A. Kriging/FORM reliability analysis of rotor-bearing systems[J]. Journal of Vibration Engineering & Technologies,2022,10(6):2179-2201. [61] XUE J,SHEN B. A novel swarm intelligence optimization approach:Sparrow search algorithm[J]. Systems Science & Control Engineering,2020,8(1):22-34. [62] XIAO F,PEDRYCZ W. Negation of the quantum mass function for multisource quantum information fusion with its application to pattern classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(2):2054-2070. [63] BICHON J B,ELDRED S M,SWILER P L. Efficient global reliability analysis for nonlinear implicit performance functions[J]. AIAA Journal,2008,46(10):2459-2468. [64] WANG Z,SHAFIEEZADEH A. ESC:An efficient error-based stopping criterion for Kriging-based reliability analysis methods[J]. Structural and Multidisciplinary Optimization,2019,59:1621-1637. [65] FORRESTER A,SOBESTER A,KEANE A. Engineering design via surrogate modelling:A practical guide[M]. Hoboken:John Wiley & Sons,2008. [66] ZHANG L,LU Z,WANG P. Efficient structural reliability analysis method based on advanced Kriging model[J]. Applied Mathematical Modelling,2015,39(2):781-793. [67] MENG Z,LI G,YANG D,et al. A new directional stability transformation method of chaos control for first order reliability analysis[J]. Structural and Multidisciplinary Optimization,2017,55:601-612. [68] PIDAPARTHI B,MISSOUM S. A multi-fidelity approach for reliability assessment based on the probability of classification inconsistency[J]. Journal of Computing and Information Science in Engineering,2023,23(1):011008. [69] CURRIN C,MITCHELL T,MORRIS M,et al. Bayesian prediction of deterministic functions,with applications to the design and analysis of computer experiments[J]. Journal of the American Statistical Association,1991,86(416):953-963. [70] XIONG S,QIAN P Z G,WU C F J. Sequential design and analysis of high-accuracy and low-accuracy computer codes[J]. Technometrics,2013,55(1):37-46. [71] SHI Y,LU Z,HE R,et al. A novel learning function based on Kriging for reliability analysis[J]. Reliability Engineering & System Safety,2020,198:106857. [72] ZADEH P M,MODAGHEGHI M. An efficient Bi-level hybrid multi-objective reliability-based design optimization of composite structures[J]. Composite Structures,2022,296:115862. |
| [1] | 张书锋, 宋国锋, 李兴格, 陈循. 含AI模型机电系统环境适应性试验与评估方法[J]. 机械工程学报, 2025, 61(16): 358-373. |
| [2] | 陈文华, 杨定, 陈哲文, 方英春, 钟立强. 长贮环境下高频电连接器接触性能退化规律的研究[J]. 机械工程学报, 2025, 61(14): 344-351. |
| [3] | 钱萍, 刘鑫雨, 陈文华, 王哲, 郭明达. 电连接器用聚氨酯胶密封件贮存可靠性建模[J]. 机械工程学报, 2024, 60(20): 361-371. |
| [4] | 杨小玉, 谢里阳, 杨奕凤, 赵丙峰. 三参数威布尔形状参数估计方法的比较与推荐取值[J]. 机械工程学报, 2024, 60(16): 367-376. |
| [5] | 郝鹏, 杨浩, 陈发鑫, 曾耀祥, 王明杰, 王博. 考虑载荷及强度不确定性的结构安全系数精细化设计方法[J]. 机械工程学报, 2024, 60(13): 182-192. |
| [6] | 付玲, 佘玲娟, 颜镀镭, 张鹏, 龙湘云. 基于内嵌物理信息与注意力机制BiLSTM神经网络的臂架系统疲劳损伤预测模型[J]. 机械工程学报, 2024, 60(13): 205-215. |
| [7] | 程洪鑫, 李璐祎, 周长聪. 基于Kriging模型和代理抽样的分布参数不确定性灵敏度分析方法[J]. 机械工程学报, 2024, 60(8): 370-383. |
| [8] | 韦新鹏, 姚中洋, 宝文礼, 张哲, 姜潮. 一种基于主动学习克里金模型的证据理论可靠性分析方法[J]. 机械工程学报, 2024, 60(2): 356-368. |
| [9] | 王瑞雪, 王慧妍, 薛爽, 贺建芸, 陈茜, 张庆, 谢鹏程, 杨卫民, 谭俊. 管状工件内表面铬基薄膜沉积技术研究进展[J]. 机械工程学报, 2023, 59(24): 56-71. |
| [10] | 孔雪峰, 潘骏, 钱萍, 魏义敏, 陈文华. 机械产品多变量相依退化建模方法研究综述[J]. 机械工程学报, 2023, 59(20): 470-488. |
| [11] | 周金宇, 王志凌, 程锦翔, 韩文钦. 面向离散化临界状态空间的重要抽样法[J]. 机械工程学报, 2023, 59(14): 352-360. |
| [12] | 蒋仁言. 两类高度截尾数据及其参数估计问题[J]. 机械工程学报, 2023, 59(10): 374-382. |
| [13] | 陈克强, 姜兴宇, 刘伟军, 田志强, 徐效文, 李世磊, 索英祁. 面向多品种小批量制造过程的NAD-EWMA控制图多目标优化设计方法[J]. 机械工程学报, 2023, 59(3): 232-248. |
| [14] | 喻天翔, 赵庆岩, 尚柏林, 宋笔锋. 考虑间隙不确定性的花键概率疲劳寿命预测方法[J]. 机械工程学报, 2022, 58(16): 391-402. |
| [15] | 李博文, 贾祥, 赵骞, 郭波. 面向产品可靠性评估的退化和寿命数据分步融合方法[J]. 机械工程学报, 2022, 58(16): 430-440. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
