• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (18): 252-266.doi: 10.3901/JME.2025.18.252

• 运载工程 • 上一篇    

扫码分享

基于运动风险的强化学习换道决策方法研究

林歆悠, 代军, 曾松榕   

  1. 福州大学机械工程及自动化学院 福州 350108
  • 收稿日期:2024-10-20 修回日期:2025-03-10 发布日期:2025-11-08
  • 作者简介:林歆悠(通信作者),男,1981年出生,博士,副教授,硕士研究生导师。主要研究方向为新能源汽车电驱动控制策略、智能驾驶轨迹追踪与转向决策控制、融合燃料电池衰退和动态特性的能量管理策略。E-mail:linxinyoou@fzu.edu.cn;代军,男,2000年出生,硕士研究生。主要研究方向为无人车换道决策研究。E-mail:2390654246@qq.com;曾松榕,男,1996年出生,硕士研究生。主要研究方向为无人车换道决策研究。E-mail:2183265006@qq.com
  • 基金资助:
    国家自然科学基金(52272389)、载运工具与装备教育部重点实验室开放课题(KLCE2022-08)和安徽工程大学检测技术与节能装置安徽省重点实验室开放研究基金(JCKJ2021A04)资助项目

Research on Lane Change Decision Method of Reinforcement Learning Based on Motion Risk

LIN Xinyou, DAI Jun, ZENG Songrong   

  1. College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108
  • Received:2024-10-20 Revised:2025-03-10 Published:2025-11-08

摘要: 针对目前换道决策模型在稳定性、控制可靠性和场景适应性上的不足,提出一种基于运动风险的强化学习换道决策方法。首先基于换道最小安全距离理论建立运动风险模型,以有效整合驾驶场景信息,提高模型训练效率及稳定性。基于多场景的强化学习换道决策训练模型,以风险模型作为智能体的观测状态,并设计回报函数驱使智能体生成安全换道决策,然后通过仿真测试,将所设计的训练模型与普通的决策模型以及传统的基于速度和距离的决策模型的对比分析,验证所提算法在模型收敛速度、平均回报及成功率都有着更好的表现。最后通过仿真软件搭建结构化道路下典型的换道场景并进行仿真实验,结果表明,该算法能在各车速条件下规划出安全平滑的换道轨迹,同时满足舒适性和目标车速要求。

关键词: 汽车工程, 强化学习, 换道决策, DDQN, 运动风险

Abstract: According to the shortcomings of current lane change decision models in stability, control reliability and scene adaptability, a reinforcement learning lane change decision method based on motion risk is proposed to solve the problem. Firstly, a motion risk model is established based on the minimum safe distance theory of lane change to integrate driving scene information effectively and improve the training efficiency and stability of the model. The risk model is used as the observed state of the agent which is based on multi-scenario reinforcement learning training model of lane change decision, and the reward function is designed to drive the agent to generate safe lane change decision making. Then, through the simulation tests, the designed training model is compared with the ordinary decision making model and the traditional decision making model based on speed and distance, and the result shows that the proposed algorithm has much better performance in model convergence speed, average returns, and success rates. Finally, simulation experiments are conducted on typical lane change scenarios under structured roads based on simulation software. The result shows that the proposed algorithm can not only plan safe and smooth lane change trajectories under various speed conditions,but also meet the requirements of comfort and target speed at the same time.

Key words: automotive engineering, reinforcement learning, lane change decision, DDQN, sports risk

中图分类号: