• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (16): 384-393.doi: 10.3901/JME.2025.16.384

• 交叉与前沿 • 上一篇    

扫码分享

基于互信息和BO-LSTM的挖掘机液压系统压力软测量

谭林1, 马伟1, 殷晨波1, 杨中良2, 王大宇3   

  1. 1. 南京工业大学车辆与工程机械研究所 南京 211816;
    2. 三一重机有限公司大挖研究院 苏州 215300;
    3. 中国工程机械工业协会科技质量部 北京 100032
  • 接受日期:2024-08-20 出版日期:2025-03-13 发布日期:2025-03-13
  • 作者简介:谭林,男,1998年出生。主要研究方向为工程机械智能化,机器学习。E-mail:tanlin_iacm@163.com;马伟,男,1994年出生,博士研究生。主要研究方向为挖掘机流体传动,工程机械智能化。E-mail:mawei_iacm@163.com;殷晨波,男,1963年出生,博士,教授,博士研究生导师。主要研究方向为工程机械数字化创新与制造,再制造技术在起重机械上的应用。E-mail:yinchenbo@njtech.edu.cn
  • 基金资助:
    国家重点研发计划(2021YFB2011904)和江苏省自然科学基金(BK20221342)资助项目

Pressure Soft Measurement of Excavator Hydraulic System Based on Mutual Information and BO-LSTM

TAN Lin1, MA Wei1, YIN Chenbo1, YANG Zhongliang2, WANG Dayu3   

  1. 1. Institute of Automobile and Construction Machinery, Nanjing Tech University, Nanjing 211816;
    2. Institute of Large Excavator Research, Sany Heavy Machinery, Suzhou 215300;
    3. Department of Science and Technology Quality, Chain Construction Machinery Association, Beijing 100032
  • Accepted:2024-08-20 Online:2025-03-13 Published:2025-03-13

摘要: 压力信号是参与挖掘机电液比例控制的重要参数。目前,压力信号的获取依赖于压力传感器,但在恶劣的工作条件下,传感器容易出现故障,导致挖掘机控制失效。因此,提出一种基于长短时记忆(Long-short term memory, LSTM)网络的压力软测量模型。先分析SY375IDS挖掘机的液压系统原理,然后利用互信息法(Mutual information, MI),确定了模型的输入。为了解决LSTM网络超参数选择困难的问题,利用贝叶斯优化(Bayesian optimization, BO)算法进行调优。最后,使用挖掘机90°甩方作业的实测压力数据验证了该模型的有效性。试验结果表明,与其他模型相比较,基于BO-LSTM的压力软测量模型具有更高的准确性和稳定性。考虑到多个传感器同时失效的情况,进行了进一步研究,构建基于BO-LSTM的多输出传统预测(Multi-output traditional prediction, MOTP)模型和多输出循环预测(Multi-output cyclic prediction, MOCP)模型。通过试验比较,MOCP模型表现出更优异的性能。

关键词: 压力传感器, 失效, 长短时记忆网络, 互信息, 贝叶斯优化

Abstract: The pressure signal is a crucial parameter in the electro-hydraulic ratio control of excavators. Currently, pressure sensors are used to acquire pressure signals. However, these sensors are susceptible to failure when operating under harsh conditions, which can lead to control failure in excavators. Therefore, a pressure soft measurement model based on long-short term memory (LSTM) network is proposed. Firstly, the hydraulic system principle of the SY375IDS excavator is analyzed. Then, the input of the model is determined using mutual information(MI). To address the challenge of selecting appropriate hyperparameters for the LSTM network, the Bayesian optimization(BO) algorithm is employed for tuning. Finally, the effectiveness of the model is verified by using the measured pressure data of the excavator during the 90° digging and dumping operation. The experimental results demonstrate that the BO-LSTM-based pressure soft measurement model exhibits higher accuracy and stability when compared to other models. In order to address the issue of simultaneous failure of multiple sensors, we conducted further research and developed a multi-output traditional prediction(MOTP) model and a multi-output cyclic prediction(MOCP) model based on BO-LSTM. Experimental comparison revealed that the MOCP model exhibited better performance.

Key words: pressure sensors, failure, long-short term memory(LSTM), mutual information, Bayesian optimization

中图分类号: