• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (14): 321-335.doi: 10.3901/JME.2025.14.321

• 交叉与前沿 • 上一篇    

扫码分享

深海采矿水力提升管多场耦合多重非线性振动模型及疲劳失效机理研究

郭晓强1,2, 吕俊霖1, 梁豪3, 李潇2, 胡宁1, 柳军2, 郭守金4   

  1. 1. 河北工业大学机械工程学院 天津 300401;
    2. 西南石油大学机电工程学院 成都 610500;
    3. 中海石油(中国)有限公司海南分公司 海口 570100;
    4. 江西铜业集团股份有限公司贵溪冶炼厂 鹰潭 335400
  • 收稿日期:2024-06-25 修回日期:2025-01-20 发布日期:2025-08-25
  • 作者简介:郭晓强,男,1991年出生,博士,副教授,硕士研究生导师。主要从事结构动力学分析、油气井管柱力学、结构安全评价等方面的研究。E-mail:786526101@qq.com;胡宁(通信作者),男,1965年出生,博士,教授,博士研究生导师。主要从事固体力学、计算材料科学、结构型与功能型等各类复合材料研发、结构与材料的在线监测及线下无损检测技术等方面的研究。E-mail:ninghu@hebut.edu.cn
  • 基金资助:
    中国科学院天然气水合物重点实验室(中国科学院广州能源研究所)(E229kf15)、国家自然科学基金(52105125)、中央引导地方科技发展资金(236Z4103G)、河北省自然科学基金面上(E2023202060)和四川省自然科学基金(2022NSFSC19222,2022YFQ0034)资助项目。

Research on Multi-field Coupling Multiple Nonlinear Vibration Model and Fatigue Failure Mechanism of Deep-sea Mining Hydraulic Riser

GUO Xiaoqiang1,2, Lü Junlin1, LIANG Hao3, LI Xiao2, HU Ning1, LIU Jun2, GUO Shoujin4   

  1. 1. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401;
    2. School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500;
    3. Hainan Branch, CNOOC (China) Co., Ltd., Haikou 570100;
    4. Guixi Smelter of Jiangxi Copper Group Co., Ltd., Yingtan 335400
  • Received:2024-06-25 Revised:2025-01-20 Published:2025-08-25

摘要: 针对深海采矿水力提升硬管流致振动失效问题,采用有限元法和Hamilton变分原理,建立多场耦合作用下水力提升管多重非线性振动模型,不仅考虑海洋流场、立管应力场及内部流场之间的多场耦合效应,还考虑立管纵横向耦合非线性、海流涡激非线性以及内部流场的流致非线性因素,并实现数值求解。将理论模型计算结果与模拟试验测试结果对比,验证模型的正确性。同时,采用Corten-Dolan累积损伤理论,建立考虑载荷相互作用效应和剩余强度衰减退化的提升管非线性疲劳损伤预测方法。在此基础上,探究外流速、中间仓质量和内流速对提升管疲劳寿命的影响规律,研究发现,随着外流速的增加,提升管的疲劳寿命呈现先减小后增大的趋势,出现疲劳寿命最大的外流速。然而,现实中外流速无法控制,因此,根据一定的外流速,通过建立的分析方法来评估最佳结构参数设置。随着中间仓质量的增加,提升管的疲劳寿命呈现先减小后增大的趋势,现场存在一个最佳中间仓质量配置参数,该参数与提升管结构和内外流速有关,可通过所建立的疲劳预测方法确定。随着内部提升速度的增加,提升管的疲劳寿命呈现先增大后减小的趋势,最优的提升速度为4 m/s。研究成果为深海采矿作业参数的设计奠定分析工具。

关键词: 管柱力学, 深海采矿, 多场耦合, 多重非线性振动模型, 疲劳失效机理

Abstract: Aiming at the failure problem by flow induced vibration of deep-sea hydraulic mining lifting pipe, a multiple nonlinear vibration model of deep-sea hydraulic mining lifting pipe under multi-field coupling is established by using finite element method and Hamilton variational principle. The model not only considers the multi-field coupling effect between ocean flow field, lifting pipe stress field and internal flow field, but also considers the vertical and horizontal coupling nonlinearity of lifting pipe, vortex induced nonlinearity of ocean load and flow induced nonlinearity of internal flow field, which is numerically solved. The correctness of the model is verified by comparing the calculation results of the theoretical model with the test results of the simulation experiment. Meanwhile, a nonlinear fatigue damage prediction method for riser considering the effect of load interaction and residual strength degradation is established by the Corten-Dolan cumulative damage theory. On this basis, the influence of external velocity, intermediate bin mass, internal velocity and wave parameters on riser fatigue life is explored. It is found that the fatigue life of lifting pipe decreases first and then increases with the increase of external flow velocity, and the external flow velocity with the largest fatigue life appears. However, the current velocity cannot be controlled in reality. Therefore, according to a certain external flow velocity, the established analysis method is used to evaluate the optimal structure parameter settings. With the increase of the intermediate bin mass, the fatigue life of the mining lifting pipe decreases first and then increases. There is an optimal intermediate bin mass configuration parameter on site, which is related to lifting pipe structure and internal and external velocity, and can be determined by the fatigue prediction method established. With the increase of internal lifting speed, the fatigue life of lifting pipe increases first and then decreases, and the optimal lifting speed is 4 m/s. The research results provide an analysis tool for the design of deep-sea mining operation parameters.

Key words: string mechanics, deep-sea mining, multi field coupling, multiple nonlinear vibration model, fatigue failure mechanism

中图分类号: