• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (10): 230-240.doi: 10.3901/JME.2025.10.230

• 仪器科学与技术 • 上一篇    

扫码分享

面向小样本场景的风机多增量故障诊断

邵海东1, 颜深1, 刘政武1, 肖一鸣1, 韩特2   

  1. 1. 湖南大学机械与运载工程学院 长沙 410082;
    2. 北京理工大学管理学院 北京 100081
  • 收稿日期:2024-05-17 修回日期:2024-12-11 发布日期:2025-07-12
  • 作者简介:邵海东(通信作者),男,1990年出生,博士,副教授,博士研究生导师。主要研究方向为故障诊断与寿命预测,数据挖掘与信息融合。E-mail:hdshao@hnu.edu.cn;颜深,男,1999年出生,博士研究生。主要研究方向为机电系统的智能故障检测与增量诊断。E-mail:yanshen@hnu.edu.cn
  • 基金资助:
    国家自然科学基金(52275104)和湖南省科技创新计划(2023RC3097)资助项目。

Multi-incremental Fault Diagnosis of Wind Turbine Towards Small Sample Scenario

SHAO Haidong1, YAN Shen1, LIU Zhengwu1, XIAO Yiming1, HAN Te2   

  1. 1. College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082;
    2. School of Management, Beijing Institute of Technology, Beijing 100081
  • Received:2024-05-17 Revised:2024-12-11 Published:2025-07-12

摘要: 作为一种复杂工业设备,风机在长期运行过程中将不可避免出现新的故障。增量故障诊断能从连续的数据流中不断积累新的故障知识,以持续扩展模型的诊断能力,并克服灾难性遗忘。然而,在面向风机复杂的多增量阶段与小故障样本的场景时,增量诊断模型仍会出现“稳定性-可塑性”的困境。因此,提出一种动态记忆策略自驱动的增量故障诊断方法,在故障样本有限的场景下,实现多增量阶段的风机智能诊断。首先,构造自适应样例库模块,通过自主地提炼存储具有代表性的旧类别样本,以避免多增量诊断过程的灾难性遗忘。其次,设计权值动态校正算法,帮助模型实时修正各类别节点之间的重要程度,以灵活地学习有限故障数据中的诊断知识。在风机的小故障样本多增量阶段的诊断试验中,通过与当前主流的增量学习方法多维对比,验证了所提方法的优越性。

关键词: 多增量故障诊断, 小样本, 风力发电机, 自适应样例库, 权值动态修正算法

Abstract: As a complex industrial device, wind turbines will inevitably develop new faults during prolonged operation. Incremental fault diagnosis can continuously accumulate new fault knowledge from ongoing data streams, thus expanding diagnostic capabilities of the model and overcoming catastrophic forgetting. However, in scenarios with complex multi-incremental stages and small fault samples for wind turbines, the incremental diagnostic model still faces the “stability-plasticity” dilemma. Therefore, a dynamic memory strategy-driven incremental fault diagnosis method is proposed to achieve intelligent diagnosis of wind turbines in multi-increment stages under limited fault sample scenarios. First, an adaptive example repository module is constructed, autonomously refining and storing representative samples of previous categories to prevent catastrophic forgetting during the multi-incremental diagnostic process. Secondly, a weight dynamic correction algorithm is designed to help the model real-time adjust the importance between different category nodes, facilitating flexible learning of diagnostic knowledge from limited fault data. In the diagnostic experiments during the multi-incremental stages of small fault samples in the wind turbine, the superiority of the proposed method is validated by the multidimensional comparison with current mainstream incremental learning methods.

Key words: multi-incremental fault diagnosis, small samples, wind turbine, adaptive example repository, weight dynamic correction algorithm

中图分类号: