机械工程学报 ›› 2025, Vol. 61 ›› Issue (10): 1-18.doi: 10.3901/JME.2025.10.001
• 特邀专栏:高端装备表面强化防护与再制造 • 上一篇
肖浚艺1, 何鹏飞2, 薛琳1, 孙川2, 梁秀兵2, 程江波1
收稿日期:
2024-07-03
修回日期:
2024-11-08
发布日期:
2025-07-12
作者简介:
肖浚艺,男,1996年出生,博士研究生。主要研究方向为碳化物超高温陶瓷与超高温热防护涂层。E-mail:xiaojy95@163.com;程江波(通信作者),男,1979年出生,博士,教授,博士研究生导师。主要研究方向为材料表面技术。E-mail:chengjiangbo@hotmail.com
基金资助:
XIAO Junyi1, HE Pengfei2, XUE Lin1, SUN Chuan2, LIANG Xiubing2, CHENG Jiangbo1
Received:
2024-07-03
Revised:
2024-11-08
Published:
2025-07-12
摘要: 新一代空天装备存在迫切的热防护需求,急需发展兼具优异热力学和抗氧化烧蚀性能的超高温陶瓷。其中,热学性能最为突出的碳化物超高温陶瓷体系存在力学和抗氧化性能短板。从碳化物超高温陶瓷的结构和性能特点出发,归纳增韧相引入和微结构仿生等强韧化设计对力学性能的增强效果;介绍调控其结构和性能的增熵化研究,涵盖阳离子固溶、阴离子修饰、高熵化设计;梳理碳化物超高温陶瓷热防护涂层的主要构筑方法,总结现有涂层的抗氧化烧蚀性能与机理;最后,从材料计算设计、强韧化和增熵化协同增强、烧蚀性能机理、大尺寸构件及涂层制备等方面对碳化物超高温陶瓷的主要发展方向进行展望。
中图分类号:
肖浚艺, 何鹏飞, 薛琳, 孙川, 梁秀兵, 程江波. 面向装备热防护的碳化物超高温陶瓷研究进展[J]. 机械工程学报, 2025, 61(10): 1-18.
XIAO Junyi, HE Pengfei, XUE Lin, SUN Chuan, LIANG Xiubing, CHENG Jiangbo. Research Progress in Carbide Ultra-high Temperature Ceramics for Equipment Thermal Protection[J]. Journal of Mechanical Engineering, 2025, 61(10): 1-18.
[1] 邢亚娟,孙波,高坤,等. 航天飞行器热防护系统及防热材料研究现状[J]. 宇航材料工艺,2018,48(4):9-15.XING Yajuan,SUN Bo,GAO Kun,et al. Research status of thermal protection system and thermal protection materials for aerospace vehicles[J]. Aerospace Materials & Technology,2018,48(4):9-15. [2] 张磊磊,付前刚,李贺军. 超高温材料的研究现状与展望[J]. 中国材料进展,2015,34(9):675-683,658.ZHANG Leilei,FU Qiangang,LI Hejun. Research state and prospect of ultra-high temperature materials[J]. Materials China,2015,34(9):675-683,658. [3] PADTURE N P. Advanced structural ceramics in aerospace propulsion[J]. Nature Materials,2016,15(8):804-809. [4] OPEKA M M,TALMY I G,ZAYKOSKI J A. Oxidation-based materials selection for 2000℃+ hypersonic aerosurfaces:theoretical considerations and historical experience[J]. Journal of Materials Science,2004,39(19):5887-5904. [5] 喻明浩,邱泽洋. 飞行器大气再入过程中黑障缓解方法综述[J]. 中国空间科学技术,2022,42(2):1-12.YU Minghao,QIU Zeyang. Review of blackout mitigation methods for vehicles during atmospheric reentry[J]. Chinese Space Science and Technology,2022,42(2):1-12. [6] SHOJAIE-BAHAABAD M,BOZORG M,NAJAFIZADEH M,et al. Ultra high temperature ceramic coatings in thermal protection systems (TPS)[J]. Ceramics International,2024,50:9937-9951. [7] NISAR A,HASSAN R,AGARWAL A,et al. Ultra-high temperature ceramics:aspiration to overcome challenges in thermal protection systems[J]. Ceramics International,2022,48(7):8852-8881. [8] FAHRENHOLTZ W G,HILMAS G E,TALMY I G,et al. Refractory diborides of zirconium and hafnium[J]. Journal of the American Ceramic Society,2007,90(5):1347-1364. [9] FAHRENHOLTZ W G,HILMAS G E. Ultra-high temperature ceramics:materials for extreme environments[J]. Scripta Materialia,2017,129:94-99. [10] LEE H,ZHOU Y,JUNG S,et al. High-pressure synthesis and thermal conductivity of semimetallic θ-tantalum nitride[J]. Advanced Functional Materials,2023,33(17):2212957. [11] ZHANG X,HILMAS G E,FAHRENHOLTZ W G. Synthesis,densification,and mechanical properties of TaB2[J]. Materials Letters,2008,62(27):4251-4253. [12] 孟章鹏. 电弧熔炼法制备B4C-TaB2-SiC系共晶复合材料[D]. 武汉:武汉理工大学,2021.MENG Zhangpeng. Preparation of B4C-TaB2-SiC based eutectic composites by arc-melting[D]. Wuhan:Wuhan University of Technology,2021. [13] 张幸红,胡平,韩杰才,等. 超高温陶瓷复合材料的研究进展[J]. 科学通报,2015,60(3):257-266.ZHANG Xinghong,HU Ping,HAN Jiecai,et al. Research progress on ultra-high temperature ceramic composites[J]. Chinese Science Bulletin,2015,60(3):257-266. [14] 苏明宇. TMC(TM=Ta、Nb、Ti、Zr)超高温陶瓷的力学性能及氧化行为研究[D]. 成都:成都大学,2023.SU Mingyu. Mechanical properties and oxidation behaviour of TMC (TM=Ta,Nb,Ti,Zr) ultra-high temperature ceramics[D]. Chengdu:Chengdu University,2023. [15] WANG Y L,XIONG X,LI G D,et al. Preparation and ablation properties of Hf(Ta) C co-deposition coating for carbon/carbon composites[J]. Corrosion Science,2013,66:177-182. [16] KIM H S,KANG B R,CHOI S M. Microstructure and mechanical properties of vacuum plasma sprayed HfC,TiC,and HfC/TiC ultra-high-temperature ceramic coatings [J]. Materials,2019,13(1):124. [17] KING D,MIDDENDORF J,CISSEL K,et al. Selective laser melting for the preparation of an ultra-high temperature ceramic coating[J]. Ceramics International,2019,45:2466-2473. [18] 叶贝琳. 高熵过渡金属碳化物陶瓷材料研究[D]. 广州:华南理工大学,2020.YE Beilin. Study of high-entropy transition metal carbide ceramics[D]. Guangzhou:South China University of Technology,2020. [19] 张步豪. Ta1-xHfxC基超高温陶瓷的固溶反应烧结、微观结构及性能调控研究[D]. 上海:中国科学院大学(中国科学院上海硅酸盐研究所),2021.ZHANG Buhao. Densification,microstructure tailoring and properties of Ta1-xHfxC based ceramics[D]. Shanghai:University of Chinese Academy of Sciences(Shanghai Institute of Ceramics,Chinese Academy of Sciences),2021. [20] USHAKOV S V,NAVROTSKY A,HONG Q J,et al. Carbides and nitrides of zirconium and hafnium[J]. Materials,2019,12(17):2728. [21] 郭朝邦,邢娅. 美国艾姆斯研究中心超高温陶瓷材料研究进展[J]. 飞航导弹,2010(11):82-84.GUO Chaobang,XING Ya. Recent developments in ultra-high temperature ceramics at NASA Ames research center[J]. Aerospace Technology,2010(11):82-84. [22] 程源. Cf/ZrC-SiC复合材料的强韧化与抗氧化性能研究[D]. 哈尔滨:哈尔滨工业大学,2020.CHENG Yuan. The study on strengthening-toughening and ablation-oxidation resistance of Cf/ZrC-SiC composites[D]. Harbin:Harbin Institute of Technology,2020. [23] NI D,CHENG Y,ZHANG J,et al. Advances in ultra-high temperature ceramics,composites,and coatings[J]. Journal of Advanced Ceramics,2022,11(1):1-56. [24] ROST C M,SACHET E,BORMAN T,et al. Entropy- stabilized oxides[J]. Nature Communications,2015,6(1):8485. [25] 于多,殷杰,张步豪,等. 碳化物超高温陶瓷材料研究进展[J]. 航空制造技术,2019,62(19):53-64.YU Duo,YIN Jie,ZHANG Buhao,et al. Recent research progresses on ultrahigh temperature carbide ceramic materials[J]. Aeronautical Manufacturing Technology,2019,62(19):53-64. [26] 张兆甫. 微纳尺度增韧ZrB2-SiC基超高温复合材料制备及强韧机理研究[D]. 大连:大连理工大学,2019.ZHANG Zhaofu. Fabrication and toughening mechanism of ZrB2-SiC based ultra high temperature ceramic matrix composites toughened by micro and nano-phases[D]. Dalian:Dalian University of Technology,2019. [27] LIU J X,HUANG X,ZHANG G J. Pressureless sintering of hafnium carbide–silicon carbide ceramics[J]. Journal of the American Ceramic Society,2013,96(6):1751-1756. [28] FENG L,LEE S H,WANG H L,et al. Nanostructured HfC-SiC composites prepared by high-energy ball-milling and reactive spark plasma sintering[J]. Journal of the European Ceramic Society,2016,36(1):235-238. [29] FENG L,FAHRENHOLTZ W G,HILMAS G E,et al. Densification,microstructure,and mechanical properties of ZrC-SiC ceramics[J]. Journal of the American Ceramic Society,2019,102(10):5786-5795. [30] SAVINO R,CRISCUOLO L,DI MARTINO G D,et al. Aero-thermo-chemical characterization of ultra-high- temperature ceramics for aerospace applications[J]. Journal of the European Ceramic Society,2018,38(8):2937-2953. [31] FENG T,TONG M,HOU W,et al. Flexural properties of cyclic ablated SiCf/HfC-SiC composites[J]. Ceramics International,2021,47(9):12851-12858. [32] ASL M S,AHMADI Z,NAMINI A S,et al. Spark plasma sintering of TiC-SiCw ceramics[J]. Ceramics International,2019,45(16):19808-19821. [33] WANG K,MENG Q,ZHAO K,et al. Freeze casting fabrication of porous ZrC/SiC decorated with SiC whiskers using polymeric precursors[J]. Materials Letters,2022,320:132362. [34] ZHONG Z,YAN L,LIU L,et al. Fabrication of modified ultra high-temperature ceramic hybrid powders using in situ grown SiC nanowires[J]. Ceramics International,2017,43(3):3462-3464. [35] WANG W,FU Q,TAN B. Effect of in-situ grown SiC nanowires on the mechanical properties of HfC-ZrB2-SiC modified C/C composites[J]. Journal of Alloys and Compounds,2017,726:866-874. [36] NGUYEN V H,PAZHOUHANFAR Y,DELBARI S A,et al. Beneficial role of carbon black on the properties of TiC ceramics[J]. Ceramics International,2020,46(15):23544-23555. [37] AKOPDZHANIAN T G,MILEIKO S T. Strength and fracture toughness of short-carbon-fiber/hafnium-carbide composites[J]. International Journal of Applied Ceramic Technology,2022,19(1):75-78. [38] JING L,YANG L,LIANG Y,et al. Oxidation mechanism of carbon fiber reinforced hafnium carbide composite in plasma wind tunnel[J]. Ceramics International,2023,49(2):3088-3093. [39] LI J,ZHANG Z,WANG S,et al. Densification and characterization of hot-pressed ZrC-based composite doped with Nb and CNT[J]. Materials & Design,2016,104:43-50. [40] FATTAHI M,BABAPOOR A,DELBARI S A,et al. Strengthening of TiC ceramics sintered by spark plasma via nano-graphite addition[J]. Ceramics International,2020,46:12400-12408. [41] NGUYEN T P,PAZHOUHANFAR Y,DELBARI S A,et al. Characterization of spark plasma sintered TiC ceramics reinforced with graphene nano-platelets[J]. Ceramics International,2020,46:18742-18749. [42] LUO L,WANG Y,DUAN L,et al. Ablation behavior of C/SiC-HfC composites in the plasma wind tunnel[J]. Journal of the European Ceramic Society,2016,36(15):3801-3807. [43] MAKURUNJE P,MONTEVERDE F,SIGALAS I. Self-generating oxidation protective high-temperature glass-ceramic coatings for Cf/C-SiC-TiC-TaC UHTC matrix composites[J]. Journal of the European Ceramic Society,2017,37(10):3227-3239. [44] NISAR A,Ariharan S,BALANI K. Synergistic reinforcement of carbon nanotubes and silicon carbide for toughening tantalum carbide based ultrahigh temperature ceramic[J]. Journal of Materials Research,2016,31(6):682-692. [45] DU B,CHENG Y,XUN L,et al. Using PyC modified 3D carbon fiber to reinforce UHTC under low temperature sintering without pressure[J]. Journal of Advanced Ceramics,2021,10(4):871-884. [46] CLEGG W J,KENDALL K,ALFORD N M,et al. A simple way to make tough ceramics[J]. Nature,1990,347(6292):455-457. [47] XIANG L,CHENG L,HOU Y,et al. Fabrication and mechanical properties of laminated HfC-SiC/BN ceramics[J]. Journal of the European Ceramic Society,2014,34(15):3635-3640. [48] XIANG L,CHENG L,FAN X,et al. Effect of interlayer on the ablation properties of laminated HfC-SiC ceramics under oxyacetylene torch[J]. Corrosion Science,2015,93:172-179. [49] Goretta K C,Cruse T A,Singh D,et al. Ceramic fibrous monolithic structures[J]. Composite Structures,2004,66(1):547-553. [50] SHAHEDIFAR V,KAKROUDI M G. Fracture behavior improvement of TaC-based ceramic composites by fibrous structure[J]. International Journal of Refractory Metals and Hard Materials,2018,71:15-20. [51] 余艺平,王松,李伟. 一种纤维独石结构超高温陶瓷复合材料及其制备方法:CN113896553B[P]. 2022-11-11.YU Yiping,WANG Song,LI Wei. An ultra-high temperature ceramic composites with fibrous monolithic structure and its preparation method:CN113896553B[P]. 2022-11-11. [52] 肖鹏,祝玉林,王松,等. 超高熔点TaxHf1–xC固溶陶瓷的制备工艺与性能研究进展[J]. 无机材料学报,2021,36(7):685-694.XIAO Peng,ZHU Yulin,WANG Song,et al. Research progress on the preparation and characterization of ultra refractory TaxHf1–xC solid solution ceramics[J]. Journal of Inorganic Materials,2021,36(7):685-694. [53] LIU J,SHAO G,LIU D,et al. Design and synthesis of chemically complex ceramics from the perspective of entropy[J]. Materials Today Advances,2020,8:100114. [54] YE Y F,WANG Q,LU J,et al. High-entropy alloy:challenges and prospects[J]. Materials Today,2016,19(6):349-362. [55] SARKAR A,WANG Q,SCHIELE A,et al. High-entropy oxides:fundamental aspects and electrochemical properties[J]. Advanced Materials,2019,31(26):1806236. [56] 赖丽萍,汪俊,种晓宇,等. 潜在高熵陶瓷热障涂层材料的研究进展[J]. 材料工程,2023,51(7):61-77.LAI Liping,WANG Jun,CHONG Xiaoyu,et al. Research progress in potential high-entropy ceramic thermal barrier coating materials[J]. Journal of Materials Engineering,2023,51(7):61-77. [57] LI X,CHEN L,ZHANG W,et al. Influence of TiC content on microstructure and mechanical properties of (Ta,Ti) C ceramics[J]. International Journal of Refractory Metals and Hard Materials,2023,110:106031. [58] HA D,KIM J,HAN J,et al. Synthesis and properties of (Hf1-xTax) C solid solution carbides[J]. Ceramics International,2018,44(16):19247-19253. [59] PATSERA E I,LEVASHOV E A,KURBATKINA V V,et al. Production of ultra-high temperature carbide (Ta,Zr) C by self-propagating high-temperature synthesis of mechanically activated mixtures[J]. Ceramics International,2015,41(7):8885-8893. [60] KURBATKINA V V,PATSERA E I,VOROTILO S A,et al. Conditions for fabricating single-phase (Ta,Zr) C carbide by SHS from mechanically activated reaction mixtures[J]. Ceramics International,2016,42(15):16491-16498. [61] CEDILLOS-BARRAZA O,MANARA D,BOBORIDIS K,et al. Investigating the highest melting temperature materials:a laser melting study of the TaC-HfC system[J]. Scientific Reports,2016,6(1):37962. [62] WEN Q,RIEDEL R,IONESCU E. Solid-solution effects on the high-temperature oxidation behavior of polymer- derived(Hf,Ta) C/SiC and (Hf,Ti) C/SiC ceramic nanocomposites[J]. Advanced Engineering Materials,2019,21(5):1800879. [63] LIU H,DU B,CHU Y. Synthesis of the ternary metal carbide solid-solution ceramics by polymer-derived- ceramic route[J]. Journal of the American Ceramic Society,2020,103(5):2970-2974. [64] DEMIRSKYI D,BORODIANSKA H,SUZUKI T S,et al. High-temperature flexural strength performance of ternary high-entropy carbide consolidated via spark plasma sintering of TaC,ZrC and NbC[J]. Scripta Materialia,2019,164:12-16. [65] WANG X F,WANG X G,YANG Q Q,et al. High-strength medium-entropy (Ti,Zr,Hf) C ceramics up to 1800 ℃[J]. Journal of the American Ceramic Society,2021,104(6):2436-2441. [66] YANG Q Q,WANG X G,WU P,et al. Ultra-high strength medium-entropy (Ti,Zr,Ta) C ceramics at 1800℃ by consolidating a core-shell structured powder[J]. Journal of the American Ceramic Society,2022,105(2):823-829. [67] YANG Q,WANG X,BAO W,et al. Influence of equiatomic Zr/(Ti,Nb) substitution on microstructure and ultra-high strength of (Ti,Zr,Nb) C medium-entropy ceramics at 1900 ℃[J]. Journal of Advanced Ceramics,2022,11(9):1457-1465. [68] LI J,ZHANG Y,ZHAO Y,et al. A novel (Hf1/3Zr1/3Ti1/3) C medium-entropy carbide coating with excellent long-life ablation resistance applied above 2100 ℃[J]. Composites Part B:Engineering,2023,251:110467. [69] LIU L,YANG W,MO J,et al. Microstructure and mechanical properties of novel medium-entropy carbide ceramics[J]. Computational Materials Science,2023,230:112464. [70] HE J,HE Z,QIN Y,et al. A review of TiCN coating prepared by reaction plasma spraying[J]. Journal of Thermal Spray Technology,2022,31(8):2280-2299. [71] FRANK F,TKADLETZ M,CZETTL C,et al. Microstructure and mechanical properties of ZrN,ZrCN and ZrC coatings grown by chemical vapor deposition[J]. Coatings,2021,11(5):491. [72] LI W,YUAN Z,ZHU Y,et al. Influence of nitrogen partial pressure on structure,mechanical and tribological properties of TaCN coatings[J]. Ceramics International,2021,47(18):26233-26241. [73] BIAN S,YU L,JIA P,et al. Study on microstructure,mechanical properties and corrosion resistance of NbCN- Cu composite films[J]. International Journal of Refractory Metals and Hard Materials,2022,107:105885. [74] PIEDRAHITA W F,APERADOR W,CAICEDO J C,et al. Evolution of physical properties in hafnium carbonitride thin films[J]. Journal of Alloys and Compounds,2017,690:485-496. [75] APERADOR W,BAUTISTA-RUIZ J,SÁNCHEZ- MOLINA J. Effect of temperature on the tribological properties of hafnium carbonitrides coatings[J]. Metals,2023,13(4):818. [76] ZHANG X,LI X,ZUO J,et al. Characterization of thermophysical and mechanical properties of hafnium carbonitride fabricated by hot pressing sintering[J]. Journal of Materials Research and Technology,2023,23:4432-4443. [77] BUINEVICH V S,NEPAPUSHEV A A,MOSKOVSKIKH D O,et al. Fabrication of ultra-high- temperature nonstoichiometric hafnium carbonitride via combustion synthesis and spark plasma sintering[J]. Ceramics International,2020,46:16068-16073. [78] PENG Z,SUN W,XIONG X,et al. Novel nitrogen-doped hafnium carbides for advanced ablation resistance up to 3273 K[J]. Corrosion Science,2021,189:109623. [79] SUVOROVA V S,NEPAPUSHEV A A,MOSKOVSKIKH D O,et al. Fabrication and oxidation resistance of the hafnium carbonitride–Silicon carbide composites[J]. Ceramics International,2022,48(16):23870-23877. [80] BUINEVICH V S,NEPAPUSHEV A A,MOSKOVSKIKH D O,et al. Ultra-high-temperature tantalum-hafnium carbonitride ceramics fabricated by combustion synthesis and spark plasma sintering[J]. Ceramics International,2021,47(21):30043-30050. [81] SUVOROVA V,KHADYROVA I,NEPAPUSHEV A,et al. Fabrication and investigation of novel hafnium- zirconium carbonitride ultra-high temperature ceramics[J]. Ceramics International,2023,49:23809-23816. [82] KHADYROVA I,SUVOROVA V,NEPAPUSHEV A,et al. Hafnium-zirconium carbonitride (Hf,Zr)(C,N) by one step mechanically induced self-sustaining reaction:powder synthesis and spark plasma sintering[J]. Ceramics,2023,6(2):1129-1138. [83] LI A Q,LIN N,LI R,et al. Effects of hafnium content on microstructures and properties of newly developed (Ti,Hf)(C,N) ceramics[J]. Ceramics International,2023,49(13):21471-21478. [84] ZENG Y,WANG D,XIONG X,et al. Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3 000 ℃[J]. Nature Communications,2017,8(1):15836. [85] LI F,BAO W,SUN S K,et al. Synthesis of single-phase metal oxycarbonitride ceramics[J]. Scripta Materialia,2020,176:17-22. [86] JIANG H H,SHAO L,DING N,et al. Ab initio study of the lattice distortion and the vacancy defects in multi- anion oxycarbonitride ceramics TiCNO and TiZrCNO[J]. International Journal of Refractory Metals and Hard Materials,2023,115:106305. [87] CASTLE E,CSANÁDI T,GRASSO S,et al. Processing and properties of high-entropy ultra-high temperature carbides[J]. Scientific Reports,2018,8(1):8609. [88] DUSZA J,ŠVEC P,GIRMAN V,et al. Microstructure of (Hf-Ta-Zr-Nb) C high-entropy carbide at micro and nano/atomic level[J]. Journal of the European Ceramic Society,2018,38(12):4303-4307. [89] PENG F,WEI Z,SONG Q,et al. Simultaneous hardening and toughening of a high-entropy (NbTaZrW) C ceramic carbide using SiC particle[J]. Journal of the American Ceramic Society,2023,106(7):4443-4454. [90] SCHWIND E C,REECE M J,CASTLE E,et al. Thermal and electrical properties of a high entropy carbide (Ta,Hf,Nb,Zr) at elevated temperatures[J]. Journal of the American Ceramic Society,2022,105(6):4426-4434. [91] NISAR A,DOLMETSCH T,PAUL T,et al. Unveiling enhanced oxidation resistance and mechanical integrity of multicomponent ultra-high temperature carbides[J]. Journal of the American Ceramic Society,2022,105(4):2500-2516. [92] WANG Y,REECE M J. Oxidation resistance of (Hf-Ta-Zr-Nb) C high entropy carbide powders compared with the component monocarbides and binary carbide powders[J]. Scripta Materialia,2021,193:86-90. [93] WANG H,HAN X,LIU W,et al. Oxidation behavior of high-entropy carbide (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2) C at 1400–1600 ℃[J]. Ceramics International,2021,47(8):10848-10854. [94] GILD J,KAUFMANN K,VECCHIO K,et al. Reactive flash spark plasma sintering of high-entropy ultrahigh temperature ceramics[J]. Scripta Materialia,2019,170:106-110. [95] GUAN S,LIANG H,WANG Q,et al. Synthesis and phase stability of the high-entropy carbide (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2) C under extreme conditions[J]. Inorganic Chemistry,2021,60(6):3807-3813. [96] ZHANG P X,YE L,CHEN F H,et al. Stability,mechanical,and thermodynamic behaviors of (TiZrHfTaM) C (M = Nb,Mo,W,V,Cr) high-entropy carbide ceramics[J]. Journal of Alloys and Compounds,2022,903:163868. [97] SHAO Z,WU Z,SUN L,et al. High entropy ultra-high temperature ceramic thermal insulator (Zr1/5Hf1/5Nb1/5Ta1/5Ti1/5) C with controlled microstructure and outstanding properties[J]. Journal of Materials Science & Technology,2022,119:190-199. [98] DAI F Z,WEN B,SUN Y,et al. Grain boundary segregation induced strong UHTCs at elevated temperatures:A universal mechanism from conventional UHTCs to high entropy UHTCs[J]. Journal of Materials Science & Technology,2022,123:26-33. [99] ZHANG P,LIU X,CAI A,et al. High-entropy carbide-nitrides with enhanced toughness and sinterability[J]. Science China Materials,2021,64(8):2037-2044. [100] PENG Z,SUN W,XIONG X,et al. Novel refractory high-entropy ceramics:Transition metal carbonitrides with superior ablation resistance[J]. Corrosion Science,2021,184:109359. [101] WANG Y,CSANÁDI T,ZHANG H,et al. Synthesis,microstructure,and mechanical properties of novel high entropy carbonitrides[J]. Acta Materialia,2022,231:117887. [102] WANG H,BI J,YANG Y,et al. Preparation,characterization and performance of high-entropy carbonitride ceramics[J]. Ceramics International,2024,50(2,Part A):3034-3040. [103] 李超,马国佳,孙刚,等. 基体偏压对316L不锈钢表面多层Ti-DLC薄膜摩擦及腐蚀行为的影响[J]. 中国表面工程,2023,36(1):189-199.LI Chao,MA Guojia,SUN Gang,et al. Effects of substrate bias voltage on friction and corrosion behavior of multilayer Ti-DLC film on the surface of 316L stainless steel[J]. China Surface Engineering,2023,36(1):189-199. [104] GE Y,Cheng J,Xue L,et al. Pore defect and corrosion behavior of HVAF-sprayed Co21Fe14Ni8Cr16Mo16C15B10 high entropy metallic glass coatings[J]. Corrosion Science,2025,242:112564. [105] Lin J,Luan H,LI J,et al. Enhanced surface mechanical and tribological properties of H13 die steel with TiAlSiN coating deposited by HiPIMS[J]. Chinese Journal of Mechanical Engineering,2024,37:139. [106] 周琼,岗志远,黄彪,等. 退火温度对DLC和Si-DLC涂层微观结构和摩擦学性能的影响[J]. 中国表面工程,2024,37(4):206-217.ZHOU Qiong,GANG Zhiyuan,HUANG Biao,et al. Effect of annealing temperature on microstructure and tribological properties of DLC and Si-DLC coatings[J]. China Surface Engineering,2024,37(4):206-217. [107] 张绍筠,岳文,王艳艳,等. 清净剂、分散剂与ZDDP复配对a-C薄膜摩擦学性能的影响[J]. 中国表面工程,2023,36(6):90-99.ZHANG Shaojun,YUE Wen,WANG Yanyan,et al. Effect of detergent,dispersant,and zinc dialkyldithiophosphate on the tribological properties of amorphous-C films[J]. China Surface Engineering,2023,36(6):90-99. [108] 魏晨阳,白琴,郭鹏,等. HiPIMS占空比对Al合金表面Ti/DLC涂层力学和摩擦性能的影响[J]. 中国表面工程,2023,36(4):77-88.WEI Chenyang,BAI Qin,GUO Peng,et al. Effect of duty ratio on structure,mechanical and frictional properties of Ti/DLC coatings on Al alloy via HiPIMS[J]. China Surface Engineering,2023,36(4):77-88. [109] Zhao J,Zhao B,Ding W,et al. Grinding characteristics of MoS2-coated brazed CBN grinding wheels in dry grinding of titanium alloy[J]. Chinese Journal of Mechanical Engineering,2023,36:109. [110] 程志强,李春燕,高凯雄. 真空宽载下二硫化钼/碳复合薄膜的超低磨损机制[J]. 中国表面工程,2024,37(3):175-184.CHENG Zhiqiang,LI Chunyan,GAO Kaixiong. Ultra- low wear mechanism of molybdenum disulfide/carbon composite films under vacuum wide load[J]. China Surface Engineering,2024,37(3):175-184. [111] 孙繁新,史彦斌,蒲吉斌,等. 苛刻空间环境下固体润滑涂层在谐波齿轮减速器表面的服役性能评价[J]. 中国表面工程,2023,36(5):76-87.SHUN Fanxin,SHI Yanbin,PU Jibin,et al. Service performance evaluation of solid-lubrication coating on harmonic gear reducer surface in harsh space environment[J]. China Surface Engineering,2023,36(5):76-87. [112] ZHANG Y,DENG Q,LI Y,et al. A novel ultra-high temperature ceramic composite coating prepared by high-speed laser cladding and pack cementation on Ta–W alloys for higher plasma ablation resistance above 2300 ℃[J]. Journal of Advanced Ceramics,2025,14(1):9221009. [113] YANG Y,LI K,ZHAO Z,et al. HfC-ZrC-SiC multiphase protective coating for SiC-coated C/C composites prepared by supersonic atmospheric plasma spraying[J]. Ceramics International,2017,43:1495- 1503. [114] YANG,Y,ZHAO,C,GONG,Q,et al. Ablation resistance under different heat fluxes of HfC-ZrC-SiC multiphase coating prepared by supersonic atmospheric plasma spraying for C/C composites[J]. Journal of the Korean Ceramic Society,2020,57:152-160. [115] FENG G,LI H,YAO X,et al. Ablation resistance of TaC-modified HfC coating prepared by supersonic plasma spraying for SiC-coated carbon/carbon composites[J]. Ceramics International,2019,45(14):17936-17945. [116] HU D,FU Q,LI X,et al. Discussion on structural parameters of the multilayer ZrC/TaC coatings based on stress analysis and ablation behaviors[J]. Surface and Coatings Technology,2022,435:128243. [117] HU D,FU Q,TONG M,et al. Multiple cyclic ablation behaviors of multilayer ZrC-TaC coating with ZrC-SiC interface layer[J]. Corrosion Science,2022,200:110215. [118] PAN X,XU X,NIU Y,et al. Relationship analysis on particle-coating-ablation property of UHTC coatings fabricated by plasma spray technique[J]. Ceramics International,2021,47(3):3808-3815. [119] CHINNARAJ R K,HONG S M,KIM H S,et al. Ablation experiments of ultra-high-temperature ceramic coating on carbon–carbon composite using ICP plasma wind tunnel[J]. International Journal of Aeronautical and Space Sciences,2020,21(4):889-905. [120] TAN Z Y,ZHU W,YANG L,et al. Microstructure,mechanical properties and ablation behavior of ultra-high-temperature Ta-Hf-C solid solution coating prepared by a step-by-step plasma solid solution method[J]. Surface and Coatings Technology,2020,403:126405. [121] TAN Z Y,WU X,ZHU W,et al. Ultra-high hardness induced by W precipitation within Ta-Hf-W-C ultra-high temperature ceramic coatings[J]. Journal of the European Ceramic Society,2022,42(13):6288-6294. [122] VERDON C,SZWEDEK O,JACQUES S,et al. Hafnium and silicon carbide multilayer coatings for the protection of carbon composites[J]. Surface and Coatings Technology,2013,230:124-129. [123] ZHANG J,ZHANG Y,FU Y,et al. Long-time ablation behavior of the multilayer alternating CVD-(SiC/HfC)3 coating for carbon/carbon composites[J]. Corrosion Science,2021,189:109586. [124] DENG Q,HE P,SUN C,et al. High speed laser cladding as a new approach to prepare ultra-high temperature ceramic coatings[J]. Journal of Advanced Ceramics,2024,13(2):143-154. |
[1] | 安同邦, 曾道平, 历承业, 吴占民, 马成勇, 彭云. 440 MPa级免涂装耐候钢用焊丝熔敷金属的强韧化机理研究[J]. 机械工程学报, 2025, 61(8): 159-169. |
[2] | 李鑫桐, 王帅, 杜佳鑫, 缪宇新, 陆皓, 徐济进. GO/AlSi10Mg激光熔化沉积组织性能研究[J]. 机械工程学报, 2023, 59(1): 309-318. |
[3] | 邹芹, 张萌蕾, 李艳国, 罗永安. WC硬质合金强韧化的研究进展与展望[J]. 机械工程学报, 2021, 57(14): 195-204,212. |
[4] | 周义刚;曾卫东;俞汉清. 钛合金高温形变强韧化研究[J]. , 1996, 32(5): 70-73,7. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||