• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (8): 214-227.doi: 10.3901/JME.2025.08.214

• 运载工程 • 上一篇    

扫码分享

随机载荷下电驱动系统高速球轴承疲劳寿命预测方法研究

赵礼辉1,2,3, 王震1, 刘天胤1, 刘东俭4, 翁硕1,2,3, 张东东1,2,3   

  1. 1. 上海理工大学机械工程学院 上海 200093;
    2. 机械工业汽车机械零部件强度与可靠性评价重点实验室 上海 200093;
    3. 上海市新能源汽车可靠性评价公共技术平台 上海 200093;
    4. 中汽研汽车试验场股份有限公司 盐城 224100
  • 收稿日期:2024-05-21 修回日期:2024-10-23 发布日期:2025-05-10
  • 作者简介:赵礼辉(通信作者),男,1985年出生,博士,副教授,硕士研究生导师。主要研究方向为车辆强度可靠性设计与评价、车辆载荷特征建模与快速试验。E-mail:Pheigoe@126.com;王震,男,1997年出生,博士研究生。主要研究方向为电驱动系统可靠性评估与寿命预测。E-mail:wangzhenares@yeah.net;刘天胤,男,1998年出生,硕士研究生。主要研究方向为车辆强度可靠性设计与评价。E-mail:liutiany1998@163.com
  • 基金资助:
    国家重点研发计划(2018YFB0104802)和上海汽车工业科技基金(2015)资助项目。

Research on Fatigue Life Prediction Method of High-speed Ball Bearing of Electric Drive System under Random Load

ZHAO Lihui1,2,3, WANG Zhen1, LIU Tianyin1, LIU Dongjian4, WENG Shuo1,2,3, ZHANG Dongdong1,2,3   

  1. 1. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093;
    2. CMIF Key Laboratory for Strength and Reliability Evaluation of Automotive Structures, Shanghai 200093;
    3. Shanghai New Energy Vehicle Reliability Evaluation Public Technology Platform, Shanghai 200093;
    4. CATARC Automotive Proving Ground Co., Ltd., Yancheng 224100
  • Received:2024-05-21 Revised:2024-10-23 Published:2025-05-10

摘要: 针对新能源汽车行驶过程中电驱动系统输出扭矩、转速快速交变,在高速效应和啮合分力作用下,轴承滚动体与内、外滚道之间接触位置和接触应力不断变化,开展道路随机载荷下电驱动系统高速球轴承疲劳寿命预测方法研究。以纯电动车电驱动系统试验场实测扭矩、转速为基础,根据轴系特定结构和齿系啮合参数建立力学平衡方程,求解得到高速轴承径向、周向、轴向力时间历程;考虑高速下滚珠离心力与陀螺力矩效应,构建滚珠与内滚道、外滚道间轴向及周向时序接触点位置表征函数、轴承受力平衡方程,并结合Hertz接触理论构建变形协调方程,建立轴承内、外滚道任意接触点处时序应力解析模型;根据滚珠与内滚道脱离条件提出迭代初值约束策略,采用Newton-Raphson方法进行循环迭代求解,并通过稳态边界工况下内外滚道接触应力分布与Romax软件仿真结果对比,验证所建模型及迭代求解的正确性;基于疲劳损伤线性累积准则,遍历求解时序应力历程下内、外滚道各接触点损伤并等效为轴承内圈、外圈及整体损伤,实现随机载荷下高速球轴承接触疲劳寿命预测,最终通过台架试验验证该方法的有效性。由此,可为电驱动系统高速轴承设计、复杂动态工况下寿命评估提供参考。

关键词: 随机载荷, 高速球轴承, 时序应力, 疲劳损伤, 寿命预测

Abstract: In view of the rapid alternation of the output torque and rotational speed of the electric drive system during the driving of new energy vehicles, under the action of high-speed effect and meshing component force, the contact position and contact stress between the bearing rolling element and the inner and outer raceways are constantly changing. Research on fatigue life prediction method of high-speed ball bearing of electric drive system under load. Based on the measured torque and rotational speed of the electric drive system of the pure electric vehicle, the mechanical balance equation is established according to the specific structure of the shaft system and the meshing parameters of the gear system, and the radial, circumferential and axial force time history of the high-speed bearing is obtained by solving it; Centrifugal force and gyroscopic moment effect, construct the position representation function of the contact point between the ball and the inner raceway and the outer raceway in the axial and circumferential direction, and the bearing force balance equation, and combine the Hertz contact theory to construct the deformation coordination equation, and establish the inner and outer bearing. Analytical model of time series stress at any contact point of the raceway; according to the separation condition of the ball and the inner raceway, an iterative initial value constraint strategy is proposed, and the Newton-Raphson method is used to solve iteratively, and the contact stress distribution of the inner and outer raceways under the steady-state boundary conditions is analyzed. Compared with the Romax simulation results, the correctness of the built model and iterative solution is verified; based on the linear accumulation criterion of fatigue damage, the damage of each contact point of the inner and outer raceways under the time-series stress history is traversed and solved, and is equivalent to the bearing inner ring, outer ring and the overall damage can be achieved to predict the contact fatigue life of high-speed ball bearings under random loads. Finally, the effectiveness of this method is verified by bench tests. Therefore, it can provide a reference for the design of high-speed bearings of electric drive systems and life evaluation under complex dynamic conditions.

Key words: random load, high speed ball bearing, time series stress, fatigue damage, life prediction

中图分类号: