• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (6): 33-42.doi: 10.3901/JME.2025.06.033

• 仪器科学与技术 • 上一篇    

扫码分享

特征原子稀疏解析的多状态机械故障诊断方法

韩长坤1, 卢威1,2, 宋浏阳3, 王华庆1   

  1. 1. 北京化工大学机电工程学院 北京 100029;
    2. 中国石化催化剂有限公司工程技术研究院 北京 100010;
    3. 高端压缩机及系统技术全国重点实验室 北京 100029
  • 收稿日期:2024-02-27 修回日期:2024-08-12 发布日期:2025-04-14
  • 作者简介:韩长坤,男,1992年出生,博士,博士后。主要研究方向为信号处理与特征提取、机械设备故障诊断等。E-mail:hanck@buct.edu.cn;王华庆(通信作者),男,1973年出生,博士,教授,博士研究生导师。主要研究方向为信号处理与特征提取、模式识别、智能诊断与寿命预测等。E-mail:hqwang@mail.buct.edu.cn
  • 基金资助:
    国家自然科学基金(52075030,52375076)和国家资助博士后研究人员计划(GZC20230202)资助项目。

Multi-state Mechanical Fault Diagnosis Method Based on Feature Atom Sparse Parse

HAN Changkun1, LU Wei1,2, SONG Liuyang3, WANG Huaqing1   

  1. 1. School of mechanical and electrical engineering, Beijing University of Chemical Technology, Beijing 100029;
    2. Institute of Engineering Technology, Sinopec Catalyst Company Limited, Beijing 100010;
    3. State Key Laboratory of High-end Compressor and System Technology, Beijing 100029
  • Received:2024-02-27 Revised:2024-08-12 Published:2025-04-14

摘要: 轴承作为机械设备关键部件,因多状态故障特征微弱或耦合的特性,导致故障特征难发掘,给机械设备的健康监测带来极大挑战。因此,提出基于特征原子稀疏解析的故障诊断方法,实现轴承多状态故障稀疏特征解析与诊断。首先,提出特征原子滤波器构造方法,基于可调Q因子小波变换的重构子带最大峭度准则提取小波基原子,并赋予基原子周期性先验特征匹配信号中的多状态故障成分。其次,构建多通道卷积稀疏多状态故障特征解析模型,基于多特征原子与交替方向乘子法优化的卷积稀疏编码解析稀疏系数分量,并重构各故障特征分量,实现多状态故障分量稀疏解析。同时,提出基于稀疏信号峭度与能量结合的稀疏度参数化方法。最后,通过重构分量的包络谱分析结果,确定信号中的特征成分,实现多状态故障诊断。通过仿真、试验和工业水泵等信号的试验验证,并与卷积字典学习方法相比,所提方法具有更好稀疏解析优势。

关键词: 多状态故障, 卷积稀疏解析, 特征解耦, 特征原子, 故障诊断

Abstract: As a critical component, bearings are difficult to excavate fault features due to the weak or coupled characteristics of multi-state fault features, which brings great challenges to the health monitoring of mechanical equipment. Therefore, a fault diagnosis method based on the sparse resolution of feature atoms is proposed to realize sparse feature resolution and diagnosis of multi-state faults. First, a feature atom filter construction method is proposed. The wavelet basis atoms are extracted based on the maximum kurtosis criterion of the reconstructed sub-band of the tunable Q-factor wavelet transform. The basis atoms are given periodic a priori features to match the multi-state fault components in the signal. Secondly, a multi-channel convolutional sparse multi-state fault feature resolution model is constructed. The sparse coefficient components are resolved based on convolutional sparse coding with multiple feature atoms and alternating direction multiplier method optimization. Reconstruct each fault feature component to realize the sparse resolution of multi-state fault components. Meanwhile, a sparsity parameterization method based on the combination of sparse signal kurtosis and energy is proposed. Finally, the results of the envelope spectrum analysis of the reconstructed components are used to determine the feature components in the signal for multi-state fault diagnosis.. The proposed method is experimentally verified through simulations, experiments and industrial pump signals, and has the advantage of better sparse resolution compared to the convolutional dictionary learning method.

Key words: multi-state faults, convolutional sparse parse, feature decoupling, feature atoms, fault diagnosis

中图分类号: