• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (6): 24-32.doi: 10.3901/JME.2025.06.024

• 仪器科学与技术 • 上一篇    

扫码分享

融合动态评片知识AI模型的焊缝缺陷探测技术

姜洪权1, 张毛杰1, 程虎跃1, 高建民1, 姚欢2, 高富超3, 郭晓峰3, 贺吉程1   

  1. 1. 西安交通大学机械制造系统工程国家重点实验室 西安 710049;
    2. 中国石油集团工程材料研究院有限公司 西安 710077;
    3. 国家管网集团西部管道有限责任公司 乌鲁木齐 830013
  • 收稿日期:2024-05-10 修回日期:2024-12-10 发布日期:2025-04-14
  • 作者简介:姜洪权,男,1978年出生,博士,副教授,博士研究生导师。主要研究方向为质量大数据分析与应用技术,先进无损检测数据智能分析理论与方法。E-mail:hqjiang@mail.xjtu.edu.cn;张毛杰,男,2000年出生。主要研究方向为机器视觉与智能制造、无损检测与缺陷识别技术。E-mail:maojz7345@stu.xjtu.edu.cn;程虎跃(通信作者),男,1998年出生,博士研究生。主要研究方向为机器视觉与智能制造、无损检测与缺陷识别技术。E-mail:3120101217@stu.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金(52375513)、国家重点研发计划(2021YFF0602300)和国家天然气管网集团有限公司研究(20230382)资助项目。

Fusion of Dynamic Film Evaluation Knowledge AI Model for Weld Defect Detection

JIANG Hongquan1, ZHANG Maojie1, CHENG Huyue1, GAO Jianmin1, YAO Huan2, GAO Fuchao3, GUO Xiaofeng3, HE Jicheng1   

  1. 1. State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049;
    2. Tubular Goods Research Institute of CNPC, Xi'an 710077;
    3. West Pipeline Company of PipeChina, Urumqi 830013
  • Received:2024-05-10 Revised:2024-12-10 Published:2025-04-14

摘要: 当前焊缝缺陷检测的方法本质上属于基于单张图像的“行业数据集+AI模型”范式,缺乏对无损检测领域知识的集成,对于大量对比度低、目标不显著的缺陷容易造成漏检、误检。针对这一问题,提出了一种融合无损检测领域动态评片知识的焊缝缺陷目标探测技术,即“行业数据集+AI模型+领域知识”的新范式。首先,基于人工探查缺陷“动态”过程知识,提出了一种基于对数变换的多图分解方法,实现单张图像“静态”分析向多张图像“动态”分析转变;其次,通过设计通道注意力机制模块,实现了多图特征的浅层融合;最后,以YOLOX为基础网络,并结合双向特征金字塔网络(Bidirectional feature pyramid network,BiFPN),实现了多图特征的深度融合和缺陷目标探测。利用某企业管道环焊缝数据进行验证,结果表明所提方法的缺陷探测mAP达到了96.72%,相比于YOLOX提升了6.68%,尤其对未熔合和未焊透的探测能力有显著提升,提升了AI技术在无损检测领域的应用能力。

关键词: 焊缝缺陷, 射线图像, 缺陷探测, AI模型, 无损检测

Abstract: The current methods for detecting weld defects essentially belong to the paradigm of ‘industry dataset + AI model’ based on a single image, lacking integration of knowledge in the field of non-destructive testing. For a large number of defects with low contrast and insignificant targets, it is easy to cause missed and false detections. Aiming at this problem, a new paradigm of ‘industry dataset + AI model + domain knowledge’ is proposed for weld defect target detection technology that can integrate dynamic evaluation knowledge in the field of non-destructive testing. Firstly, based on the knowledge of the ‘dynamic’ process of manually detecting defects, a multi graph decomposition method based on logarithmic transformation is proposed to transform the ‘static’ analysis of a single image into the ‘dynamic’ analysis of multiple images; Secondly, by designing a channel attention mechanism module, shallow fusion of multi-image features was achieved; Finally, based on YOLOX network and combined with bidirectional feature pyramid network (BiFPN), deep fusion of multi graph features and defect target detection were achieved. Using data from a certain enterprise’s pipeline circumferential weld seam for verification, the results show that the proposed method achieves a defect detection mAP of 96.72%, which is 6.68% higher than YOLOX. Especially, it significantly improves the detection ability for incomplete fusion and incomplete penetration, enhancing the application ability of AI technology in non-destructive testing.

Key words: weld defects, X-ray images, defect detection, AI model, non-destructive testing

中图分类号: