• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (3): 225-236.doi: 10.3901/JME.2025.03.225

• 机器人及机构学 • 上一篇    

扫码分享

气动人工肌肉驱动的上肢康复外骨骼机器人设计与控制

秦岩丁1,2, 范迦得1,2, 张浩琦1,2, 田孟强3, 韩建达1,2   

  1. 1. 南开大学人工智能学院 天津 300350;
    2. 南开大学深圳研究院 深圳 518083;
    3. 天津市人民医院关节与运动医学科 天津 300121
  • 收稿日期:2024-03-31 修回日期:2024-10-11 发布日期:2025-03-12
  • 作者简介:秦岩丁,男,1983年出生,博士,教授,博士研究生导师。主要研究方向为医疗与康复机器人、微纳操作机器人。E-mail:qinyd@nankai.edu.cn;范迦得,男,2000年出生,硕士研究生。主要研究方向为外骨骼机器人。E-mail:2120220471@mail.nankai.edu.cn;张浩琦,女,1998年出生,博士研究生。主要研究方向为医疗机器人。E-mail:2120200408@mail.nankai.edu.cn;田孟强,男,1972年出生,硕士,主任医师。主要研究方向为骨性关节炎,肩袖损伤,医疗机器人。E-mail:tmqjoint@126.com;韩建达(通信作者),男,1968年出生,博士,教授,博士研究生导师。主要研究方向为医疗机器人、移动机器人。E-mail:hanjianda@nankai.edu.cn
  • 基金资助:
    天津市自然科学基金(21JCZDJC00090)和国家自然科学基金(U1913208)资助项目。

Design and Control of a Pneumatic Artificial Muscle Actuated Exoskeleton Robot for Upper Limb Rehabilitation

QIN Yanding1,2, FAN Jiade1,2, ZHANG Haoqi1,2, TIAN Mengqiang3, HAN Jianda1,2   

  1. 1. College of Artificial Intelligence, Nankai University, Tianjin 300350;
    2. Shenzhen Research Institute of Nankai University, Shenzhen 518083;
    3. Department of Joint and Sport Medicine, Tianjin Union Medical Center, Tianjin 300121
  • Received:2024-03-31 Revised:2024-10-11 Published:2025-03-12

摘要: 面向上肢康复与辅助运动,研制了一款基于气动人工肌肉(PAM)驱动的上肢康复外骨骼机器人。与纯刚性驱动不同,该外骨骼机器人使用PAM与刚性连杆,同时实现了柔顺驱动与高精度运动,有助于降低在康复过程中对用户造成二次伤害的概率。在结构设计上,该外骨骼采用直驱和绳驱相结合的方式,实现了肩肘关节运动的三个自由度。该外骨骼结构紧凑,可以满足可穿戴的要求。完成了该外骨骼的运动学建模,并基于PAM的三元素模型和拉格朗日方法完成了动力学建模。针对PAM的迟滞非线性,将直接逆模型法与自适应投影算法相结合,实现了无须离线建模与求逆的自适应迟滞补偿。最后,通过迟滞补偿实验与抗干扰实验完成了原理性验证。实验表明,研制的外骨骼兼具柔顺性和高运动精度,可以满足上肢康复与辅助运动的需求。

关键词: 气动人工肌肉, 上肢外骨骼, 康复机器人, 迟滞补偿

Abstract: A pneumatic artificial muscle (PAM) actuated exoskeleton is developed for upper limb rehabilitation and augmentation. Different from rigid actuation, the developed exoskeleton combines PAM and rigid link to achieve both flexible actuation and high-precision movement. This helps to reduce the risk of unwanted injury to users during the rehabilitation process. In structural design, a combination of direct driven and cable driven is adopted to provide 3 degrees-of-freedom actuation for the shoulder and elbow joints. The compact structure helps to facilitate its wearability. This research presents the kinematics modeling of the exoskeleton, and dynamic modeling is then finished using the three-element model of PAM and Lagrange method. For the hysteresis nonlinearity of PAM, the combination of direct inverse modeling and adaptive projection algorithm is adopted to achieve adaptive hysteresis compensation without offline modeling and inversion. Finally, the feasibility of the exoskeleton and the proposed controller is verified via hysteresis compensation and anti-interference experiments. Experimental results show that the developed exoskeleton features both flexible actuation and high motion accuracy, satisfying the needs of upper limb rehabilitation and augmentation.

Key words: pneumatic artificial muscle, upper limb exoskeleton, rehabilitation robot, hysteresis compensation

中图分类号: