机械工程学报 ›› 2024, Vol. 60 ›› Issue (20): 271-288.doi: 10.3901/JME.2024.20.271
邵常焜1, 汤勇1, 陈恭2, 余树东3, 颜才满1, 丁鑫锐1, 袁伟1, 张仕伟1
收稿日期:
2023-10-18
修回日期:
2024-05-26
出版日期:
2024-10-20
发布日期:
2024-11-30
通讯作者:
张仕伟,男,1988年出生,博士,教授,博士研究生导师。主要研究方向为高效相变传热技术,微纳功能结构设计与制造,新能源热管理技术。E-mail:swzhang@scut.edu.cn
作者简介:
邵常焜,男,1997年出生,博士研究生。主要研究方向为表面功能结构,相变热控器件,电子器件散热。E-mail:mesck@mail.scut.edu.cn
基金资助:
SHAO Changkun1, TANG Yong1, CHEN Gong2, YU Shudong3, YAN Caiman1, DING Xinrui1, YUAN Wei1, ZHANG Shiwei1
Received:
2023-10-18
Revised:
2024-05-26
Online:
2024-10-20
Published:
2024-11-30
摘要: 随着技术的进步,以5G芯片、IGBT等高热流密度器件为核心的高端设备对于热控的要求越来越高。这不仅需要精确地控制热源的温度以防止温度过高,还要求控制热量的流向,防止热量逆流损伤设备。以热管为代表的传统相变热控器件虽然具有极高的热导率,但热管的双向导热特性限制了其应用范围。而热二极管是一种可以单向传输热量的器件,正反方向的热导率具有显著差异,其独特的热控能力对于电子设备热控、储能、建筑散热等领域具有重要意义。基于此,对现有各种类型热二极管的原理、优缺点及应用进行了概述。定量研究对比了不同类型的热二极管,指出相变传热式热二极管的综合传热性能较其他类型热二极管更优。重点综述了相变传热式热二极管表面功能结构的加工及壳体封装工艺,讨论了目前国内外相关方面的研究进展以及存在的问题,并对未来发展趋势进行展望。
中图分类号:
邵常焜, 汤勇, 陈恭, 余树东, 颜才满, 丁鑫锐, 袁伟, 张仕伟. 热二极管及其热控功能结构制造的研究现状与发展趋势[J]. 机械工程学报, 2024, 60(20): 271-288.
SHAO Changkun, TANG Yong, CHEN Gong, YU Shudong, YAN Caiman, DING Xinrui, YUAN Wei, ZHANG Shiwei. Development Status and Perspective Trend of Thermal Diodes and Its Thermal Control Functional Structure Manufacture[J]. Journal of Mechanical Engineering, 2024, 60(20): 271-288.
[1] 华为技术有限公司. 麒麟9000[EB/OL]. 2020. https://www.hisilicon.com/cn/products/Kirin/Kirin-flagship-chips/Kirin-9000. Huawei Technologies Co. Kirin 9000[EB/OL]. 2020. https://www.hisilicon.com/cn/products/Kirin/Kirin- flagship-chips/Kirin-9000. [2] WU H,ZHANG G,FENG Z,et al. Research on pumped two-phase single-sided cold plate of IGBT for rail transit applications[J]. Transportation Safety and Environment,2021,3(3):1-11. [3] 石自浩,韩晓宣. 电动汽车电池包热管理系统研究[J]. 农业装备与车辆工程,2022,60(5):1-5. SHI Zihao,HAN Xiaoxuan. Research on thermal management system of battery pack for electric vehicle[J]. Agricultural Equipment & Vehicle Engineering,2022,60(5):1-5. [4] 国家消防救援局. 全国一季度火灾21.9万起,死亡625人![EB/OL]. 2022. https://www.119.gov.cn/gk/sjtj/ 2022/28761.shtml. National Fire and Rescue Service . 219,000 fires,625 deaths in first quarter nationwide! [EB/OL]. 2022. https:// www.119.gov.cn/gk/sjtj/2022/28761.shtml. [5] HONOR. 荣耀Magic V2[EB/OL]. 2023. https:// www.hihonor.com/cn/phones/honor-magic-v2/. HONOR. Honor Magic V2[EB/OL]. 2023. https:// www.hihonor.com/cn/phones/honor-magic-v2/. [6] SHIOGA T,MIZUNO Y,NAGANO H. Operating characteristics of a new ultra-thin loop heat pipe[J]. International Journal of Heat and Mass Transfer,2020(151):119436. [7] WHITE M T,OYEWUNMI O A,CHATZOPOULOU M A,et al. Computer-aided working-fluid design,thermodynamic optimisation and thermoeconomic assessment of ORC systems for waste-heat recovery[J]. Energy,2018,161:1181-1198. [8] 史保新,张仁元,钟浩元,等. 热二极管在太阳能热水器中的应用研究[J]. 广东工业大学学报,2010,27(2):4. SHI Baoxin,ZHANG Renyuan,ZHONG Haoyuan,et al. Research into the application of thermodiode-employed solar water heater[J]. Journal of Guangdong University of Technology,2010,27(2):4. [9] STARR C. The copper oxide rectifier[J]. Journal of Applied Physics,1936,7(1):15-19. [10] WEHMEYER G,YABUKI T,MONACHON C,et al. Thermal diodes,regulators,and switches:Physical mechanisms and potential applications[J]. Applied Physics Reviews,2017(4):041304. [11] WONG M Y,TSO C Y,HO T C,et al. A review of state of the art thermal diodes and their potential applications[J]. International Journal of Heat and Mass Transfer,2021,164:120607. [12] DAMES C. Solid-state thermal rectification with existing bulk materials[J]. Journal of Heat Transfer,2009,131(6):177-181. [13] KOBAYASHI W,TERAOKA Y,TERASAKI I. An oxide thermal rectifier[J]. Applied Physics Letters,2009,95:171905. [14] CHEN R,CUI Y,TIAN H,et al. Controllable thermal rectification realized in binary phase change composites[J]. Scientific Reports,2015,5:1-8. [15] PALLECCHI E,CHEN Z,FERNANDES G E,et al. A thermal diode and novel implementation in a phase-change material[J]. Materials Horizons,2015,2(1):125-129. [16] LYU J,SHENG Z,XU Y,et al. Nanoporous kevlar aerogel confined phase change fluids enable super-flexible thermal diodes[J]. Advanced Functional Materials,2022,32(19):1-10. [17] WEI A,LAHKAR S,LI X,et al. Multilayer graphene-based thermal rectifier with interlayer gradient functionalization[J]. ACS Applied Materials and Interfaces,2019,11(48):45180-45188. [18] CHAKRABORTY D,BROOKE J,HULSE N,et al. Thermal rectification optimization in nanoporous Si using Monte Carlo simulations[J]. Journal of Applied Physics,2019,126(18):184303. [19] CARLOMAGNO I,CIMMELLI V A,JOU D. Enhanced thermal rectification in graded SicGe1-c alloys[J]. Mechanics Research Communications,2020,103:103472. [20] WANG H,HU S,TAKAHASHI K,et al. Experimental study of thermal rectification in suspended monolayer graphene[J]. Nature Communications,2017,8(5):1-8. [21] BERNARDES M. Methods and mechanisms for thermal semi conduction:US 2009/0194263 A1[P]. 2009-08-06. [22] DOS SANTOS BERNARDES M A. Experimental evidence of the working principle of thermal diodes based on thermal stress and thermal contact conductance - Thermal semiconductors[J]. International Journal of Heat and Mass Transfer,2014,73:354-357. [23] FERNANDES C R,SILVA D J,PEREIRA A M,et al. Numerical simulation and optimization of a solid state thermal diode based on shape-memory alloys[J]. Energy,2022,255:124460. [24] TSO C Y,CHAO C Y H. Solid-state thermal diode with shape memory alloys[J]. International Journal of Heat and Mass Transfer,2016,93:605-611. [25] INCROPERA F P. Fundamentals of Heat and Mass Transfer[M]. New York:Wiley,2011. [26] LIU X,WANG L,ZHANG Z M. Near-field thermal radiation:Recent progress and outlook[J]. Nanoscale and Microscale Thermophysical Engineering,2015,19(2):98-126. [27] PARK K,ZHANG Z. Fundamentals and applications of near-field radiative energy transfer[J]. Frontiers in Heat and Mass Transfer,2013,4(1):1-26. [28] ITO K,NISHIKAWA K,IIZUKA H,et al. Experimental investigation of radiative thermal rectifier using vanadium dioxide[J]. Applied Physics Letters,2014,105(25):1-6. [29] FIORINO A,THOMPSON D,ZHU L,et al. A thermal diode based on nanoscale thermal radiation[J]. ACS Nano,2018,12(6):5174-5179. [30] ZHANG P,YANG P,ZHENG Z,et al. Effect of monolayer graphene on the performance of near-field radiative thermal rectifier between doped silicon and vanadium dioxide[J]. International Journal of Heat and Mass Transfer,2020,155:119707. [31] ZHENG Z,LIU X,WANG A,et al. Graphene-assisted near-field radiative thermal rectifier based on phase transition of vanadium dioxide (VO2)[J]. International Journal of Heat and Mass Transfer,2017,109:63-72. [32] HANEKAR A L O K G,IAN Y A T,ICCI M A R,et al. Near-field thermal rectification devices using phase change periodic nanostructure[J]. Opt Express,2018,26(2):69-77. [33] BOREYKO J B,CHEN C H. Self-propelled dropwise condensate on superhydrophobic surfaces[J]. Physical Review Letters,2009,103(18):184501. [34] BOREYKO J B,ZHAO Y,CHEN C H. Planar jumping-drop thermal diodes[J]. Applied Physics Letters,2011,99(23):2012-2015. [35] YAN X,ZHANG L,SETT S,et al. Droplet jumping:Effects of droplet size,surface structure,pinning,and liquid properties[J]. ACS Nano,2019,13(2):1309-1323. [36] BOREYKO J B,CHEN C H. Vapor chambers with jumping-drop liquid return from superhydrophobic condensers[J]. International Journal of Heat and Mass Transfer,2013,61(1):409-418. [37] TRAIPATTANAKUL B,TSO C Y,CHAO C Y H. A phase-change thermal diode using electrostatic-induced coalescing-jumping droplets[J]. International Journal of Heat and Mass Transfer,2019,135:294-304. [38] OH J,BIRBARAH P,FOULKES T,et al. Jumping-droplet electronics hot-spot cooling[J]. Applied Physics Letters,2017,110(12):1-6. [39] ZHU Y,TSO C Y,HO T C,et al. Study of coalescence-induced jumping droplets on biphilic nanostructured surfaces for thermal diodes in thermal energy storage systems[C/CD]//ASME 202014th International Conference on Energy Sustainability. American Society of Mechanical Engineers,2020. [40] WONG M Y,ZHU Y,ZENG Y,et al. Thermal rectification enhancement of coalescence–jumping phase transition thermal diodes using Cu–Al2O3 hybrid nanofluids[J]. Advanced Engineering Materials,2022,24(6):1-12. [41] Damoulakis G,Jafari G M,Koukoravas T P,et al. High-performance planar thermal diode with wickless components[J]. Journal of Electronic Packaging,2022,144(3):031004. [42] 刘云,李志刚,李玉华,等. 环路热虹吸管间歇沸腾可视化实验研究[J]. 工程热物理学报,2021,42(1):215-221. LIU Yun,LI Zhigang,LI Yuhua,et al. Visualized experimentai investigation on the two-phase instability in a closed loop thermosyphon[J]. Journal of Engineering Thermophysics,2021,42(1):215-221. [43] WANG X,LIU H,WANG Y,et al. CFD simulation of dynamic heat transfer behaviors in super-long thermosyphons for shallow geothermal application[J]. Applied Thermal Engineering,2020,174:115295. [44] PEI W,ZHANG M,LI S,et al. Laboratory investigation of the efficiency optimization of an inclined two-phase closed thermosyphon in ambient cool energy utilization[J]. Renewable Energy,2019,133:1178-1187. [45] PUGSLEY A,ZACHAROPOULOS A,DEB M J,et al. Theoretical and experimental analysis of a horizontal planar liquid-vapour thermal diode (PLVTD)[J]. International Journal of Heat and Mass Transfer,2019,144:118660. [46] WONG M Y,TRAIPATTANAKUL B,TSO C Y,et al. Experimental and theoretical study of a water-vapor chamber thermal diode[J]. International Journal of Heat and Mass Transfer,2019,138:173-183. [47] 汤勇,唐恒,万珍平,等. 超薄微热管的研究现状及发展趋势[J]. 机械工程学报,2017,53(20):131-144. TANG Yong,TANG Heng,WAN Zhenping,et al. Development status and perspective trend of ultra—thin micro heat pipe[J]. Journal of Mechanical Engineering,2017,53(20):131-144. [48] KANG Z,FAN J. Heat-pipe-based tunable multimode horizontal thermal rectifier[J]. Energy Reports,2022,8:4274-4281. [49] 吴亦农,赵晨阳,蒋珍华,等. 特斯拉阀冷凝器低温环路热管:中国,202220573904.3[P]. 2022-11-08. WU Yinong,ZHAO Chengyang,JIANG Zhenhua,et al. Tesla valve condenser low-temperature loop heat pipe:China,202220573904.3[P]. 2022-11-08. [50] XIAOMI. Introducing Loop LiquidCool Technology [EB/OL]. 2021. https://www.youtube.com/watch?v= nhL36Kt_XBg. [51] XIAOMI. Xiaomi 13 Ultra[EB/OL]. 2023. https://www.mi.com/xiaomi-13-ultra? g_utm=Thirdparty.Baidu. ProductUnion.BrandZone-Baidu-PC.Xiaomi-K-4. [52] 程婷,章先涛,阚伟民,等. 开式热管低温海水淡化的余热回收技术[J]. 可持续能源,2012,1:103-106. CHENG Ting,ZHANG Xiantao,KANG Weiming,et al. Open heat pipe for desalination with waste heat[J]. Sustainable Energy,2012,1:103-106. [53] ZHOU H,TIAN T,WANG X,et al. Combining looped heat pipe and thermoelectric generator module to pursue data center servers with possible power usage effectiveness less than 1[J]. Applied Energy,2023,332:1-18. [54] KUMAR P,SAHU G,CHATTERJEE D,et al. Copper wick based loop heat pipe for thermal management of a high-power LED module[J]. Applied Thermal Engineering,2022,211:118459. [55] 陈恭,张仕伟,汤勇,等. 一种基于气液共面结构的超薄热二极管及其制备方法:中国,202110633764.4[P]. 2021-10-01. CHEN Gong,ZHANG Shiwei,TANG Yong,et al. A ultrathin thermal diode based on gas-liquid coplanar structure and its preparation method:China,202110633764.4[P]. 2021-10-01. [56] 张仕伟,黄皓熠,汤勇,等. 一种基于相变传热技术的特斯拉阀式超薄平面热二极管:中国,202210025916.7[P]. 2022-05-13. ZHANG Shiwei,HUANG Haoyi,TANG Yong,et al. A Tesla valve type ultra-thin planar thermal diode based on phase change heat transfer technology:China,202210025916.7[P]. 2022-05-13. [57] XIANG J,YANG W,LIAO H,et al. Design and thermal performance of thermal diode based on the asymmetric flow resistance in vapor channel[J]. International Journal of Thermal Sciences,2023,191(1):108345. [58] Wang S,Cottrill A L,Kunai Y,et al. Microscale solid-state thermal diodes enabling ambient temperature thermal circuits for energy applications[J]. Physical Chemistry Chemical Physics,2017,19(20):13172-13181. [59] MENG Z,GULFAM R,ZHANG P,et al. Numerical and experimental study of the thermal rectification of a solid-liquid phase change thermal diode[J]. International Journal of Heat and Mass Transfer,2020,147:118915. [60] AUDHKHASI R,POVINELLI M L. Design of far-field thermal rectifiers using gold-vanadium dioxide micro-gratings[J]. Journal of Applied Physics,2019,126:063106. [61] WEN S,LIU X,CHENG S,et al. Ultrahigh thermal rectification based on near-field thermal radiation between dissimilar nanoparticles[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2019,234:1-9. [62] XU G,SUN J,MAO H,et al. Near-field radiative thermal rectification assisted by black phosphorus sheets[J]. International Journal of Thermal Sciences,2020,149(11):106179. [63] EDALATPOUR M,MURPHY K R,MUKHERJEE R,et al. Bridging‐droplet thermal diodes[J]. Advanced Functional Materials,2020,30(43):2004451. [64] SMYTH M,QUINLAN P,MONDOL J D,et al. The evolutionary thermal performance and development of a novel thermal diode pre-heat solar water heater under simulated heat flux conditions[J]. Renewable Energy,2017,113:1160-1167. [65] 邓亮明. 热二极管吸液芯微结构设计制造及传热性能研究[D]. 广州:广州大学,2022. DENG Liangming. Design,manufacturing,and heat transfer performance study of microstructures for thermodiode liquid absorbing cores [D]. Guangzhou:Guangzhou University,2022. [66] CHEN G,TANG Y,WAN Z,et al. Heat transfer characteristic of an ultra-thin flat plate heat pipe with surface-functional wicks for cooling electronics[J]. International Communications in Heat and Mass Transfer,2019,100:12-19. [67] 唐恒,汤勇,万珍平,等. 平板铝热管微沟槽吸液芯的制备及毛细性能研究[J]. 机械工程学报,2019,55(6):186-193. TANG Heng,TANG Yong,WAN Zhenping,et al. Fabrication and capillary performance of micro-grooved wicks for aluminium flat-plate heat pipes[J]. Journal of Mechanical Engineering,2019,55(6):186-193. [68] ZHONG G,TANG Y,DING X,et al. Experimental investigation on wettability and capillary performance of ultrasonic modified grooved aluminum wicks[J]. International Journal of Heat and Mass Transfer,2021,179:121642. [69] DAMOULAKIS G,KAUFMAN G,TSUBAKI A,et al. Vapor chamber thermal diode with laser-fabricated wickless components[C]//InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems,ITHERM,2021,6:246-253. [70] BIERBAUM K,GRUNZE M,BASKI A A,et al. Wettability of Porous Surfaces[J]. Trans. Faraday Soc.,1944,40:546. [71] TANG H,WENG C,TANG Y,et al. Thermal performance enhancement of an ultra-thin flattened heat pipe with multiple wick structure[J]. Applied Thermal Engineering,2021,183(P1):116203. [72] TANG Y,HONG S,WANG S,et al. Experimental study on thermal performances of ultra-thin flattened heat pipes[J]. International Journal of Heat and Mass Transfer,2019,134:884-894. [73] ZHOU W,LI Y,CHEN Z,et al. A novel ultra-thin flattened heat pipe with biporous spiral woven mesh wick for cooling electronic devices[J]. Energy Conversion and Management,2019,180(9):769-783. [74] LI X,YAO D,ZUO K,et al. Effects of pore structures on the capillary and thermal performance of porous silicon nitride as novel loop heat pipe wicks[J]. International Journal of Heat and Mass Transfer,2021,169:120985. [75] ZHANG Y,LUAN T,JIANG H,et al. Visualization study on start-up characteristics of a loop heat pipe with a carbon fiber capillary wick[J]. International Journal of Heat and Mass Transfer,2021,169:120940. [76] XU Y,KRAEMER D,SONG B,et al. Nanostructured polymer films with metal-like thermal conductivity[J]. Nature Communications,2019,10(1):1-8. [77] 郭奇,高源,荔栓红,等. 石墨烯增强聚合物气密性的研究进展[J]. 复合材料学报,2022,39(3):11. GUO Qi,GAO Yuan,LI Shuanhong,et al. Research progress in the enhanced polymer airtightness of graphene[J]. Acta Materiae Compositae Sinica,2022,39(3):11. [78] LI C M,LUO Y,ZHOU C P,et al. Experimental investigation of thermal conduction performance on silicon-based micro flat heat pipe[J]. Key Engineering Materials,2015,645-646:1032-1037. [79] LI Y,CHEN S,HUANG J,et al. Experimental and simulation studies on cold welding sealing process of heat pipes[J]. Chinese Journal of Mechanical Engineering,2017,30(2):332-343. [80] FENG S,ZHU P,ZHENG H,et al. Three-dimensional capillary ratchet-induced liquid directional steering[J]. Science,2021,373(6561):1344-1348. [81] CHEN H,ZHANG P,ZHANG L,et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature,2016,532(7597):85–89. [82] CHEN H,RAN T,GAN Y,et al. Ultrafast water harvesting and transport in hierarchical microchannels[J]. Nature Materials,2018,17(10):935-942. [83] WANG J,YI S,YANG Z,et al. Laser direct structuring of bioinspired spine with backward microbarbs and hierarchical microchannels for ultrafast water transport and efficient fog harvesting[J]. ACS Applied Materials and Interfaces,2020,12(18):21080-21087. [84] 刘亚华,孙炎俊,郭纯方,等. 高温表面液滴沸腾模式及其定向运动的研究进展[J]. 机械工程学报,2018,54(20):24-39. LIU Yahua,SUN Yanjun,GUO Chunfang,et al. Review on recent progress in boiling modes and self-migration of droplets on heated surfaces [J]. Journal of Mechanical Engineering,2018,54(20):24-39. [85] LIN F,QURAISHY A N,LI R,et al. Molding ,patterning and driving liquids with light[J]. Materials Today,2021,51:48-55. [86] LIN F,NASIR A,TONG T,et al. Marangoni convection-driven laser fountains on free surfaces of liquids[J]. Materials Today Physics,2021,21:100558. [87] MING Z,ZHONGLIANG L,GUOYUAN M,et al. The experimental study on flat plate heat pipe of magnetic working fluid[J]. Experimental Thermal and Fluid Science,2009,33(7):1100-1105. [88] BAHIRAEI M,HANGI M. Flow and heat transfer characteristics of magnetic nano fluids :A review[J]. Journal of Magnetism and Magnetic Materials,2015,374:125-138. [89] SUKCHANA T,PRATINTHONG N. Effect of bending position on heat transfer performance of R-134a two-phase close loop thermosyphon with an adiabatic section using flexible hoses[J]. International Journal of Heat and Mass Transfer,2017,114:527-535. [90] SUKCHANA T,PRATINTHONG N. A two-phase closed thermosyphon with an adiabatic section using a flexible hose and R-134a filling[J]. Experimental Thermal and Fluid Science,2016,77:317-326. [91] PRICE D M,JARRATT M. Thermal conductivity of PTFE and PTFE composites[J]. Thermochimica Acta,2002,392-393:231-236. [92] LIU C,LI Q,FAN D. Fabrication and performance evaluation of flexible flat heat pipes for the thermal control of deployable structure[J]. International Journal of Heat and Mass Transfer,2019,144:118661. [93] 汤勇,孙亚隆,唐恒,等. 柔性热管的研究现状与发展趋势[J]. 机械工程学报,2022,58(10):265-279. TANG Yong,SUN Yalong,TANG Heng,et al. Development status and perspective trend of flexible heat pipe[J]. Journal of Mechanical Engineering,2022,58(10):265–279. [94] 辛菲,田文超. 具有电流体动力学作用的微平板热管:中国,202210198504.3[P]. 2022-12-02. XIN Fei,TIAN Wenchao. Micro flat plate heat pipe with electrohydrodynamic effect:China,202210198504.3[P]. 2022-12-02. [95] PHAN N,NAGANO H. Novel hybrid structures to improve performance of miniature flat evaporator loop heat pipes for electronics cooling[J]. International Journal of Heat and Mass Transfer,2022,195:123187. [96] YE H,SOKOLOVSKIJ R,VAN ZEIJL H W,et al. A polymer based miniature loop heat pipe with silicon substrate and temperature sensors for high brightness light-emitting diodes[J]. Microelectronics Reliability,2014,54(6-7):1355-1362. |
[1] | 黄家乐, 李萍, 邓亮明, 陈志鹏, 周伟, 向建化. 基于不对称流动阻力的热二极管设计及传热性能研究[J]. 机械工程学报, 2024, 60(18): 208-217. |
[2] | 汪朝晖, 熊肖, 高全杰, 范益伟. 基于仿蜘蛛网流道结构设计的圆柱形锂电池热管理系统性能研究[J]. 机械工程学报, 2023, 59(22): 150-162. |
[3] | 郭喆晨, 徐俊, 王行早, 徐梓铭, 梅雪松. 基于一维/三维热模型的平板热管/液冷电池热管理系统优化设计[J]. 机械工程学报, 2023, 59(22): 79-88. |
[4] | 于仲安, 陈可怡, 张军令, 胡泽洲. 动力电池散热技术研究进展*[J]. 电气工程学报, 2022, 17(4): 145-162. |
[5] | 刘家豪, 马晴雯. 在浸入式冷却中添加新型翅片的混合电池热管理系统[J]. 电气工程学报, 2022, 17(4): 113-121. |
[6] | 唐恒, 汤勇, 伍晓宇, 袁伟, 孙亚隆, 鲁艳军, 彭锐涛. 表面功能结构制造研究的新进展与发展趋势[J]. 机械工程学报, 2022, 58(11): 183-199. |
[7] | 周伟, 朱鑫宁, 连云崧, 游昌堂. 质子交换膜燃料电池的三维流场技术研究进展[J]. 机械工程学报, 2021, 57(8): 2-12. |
[8] | 陈泽宇, 熊瑞, 李世杰, 张渤. 电动载运工具锂离子电池低温极速加热方法研究[J]. 机械工程学报, 2021, 57(4): 113-120. |
[9] | 陈泽宇, 张渤, 熊瑞, 李世杰. 动力电池低温极速自加热系统加热一致性及其影响因素的建模分析[J]. 机械工程学报, 2021, 57(22): 226-236. |
[10] | 刘东晓;李运泽;李明敏;李淼;李运华. 用于动态热管理的低介入式热流传感器响应特性试验研究[J]. , 2011, 47(12): 106-112. |
[11] | 汤勇;周明;韩志武;万珍平. 表面功能结构制造研究进展[J]. , 2010, 46(23): 93-105. |
[12] | 朱玉田;萩原一郎;毛利泰裕. 形状记忆合金智能复合材料自修复中传感与控制方法研究[J]. , 2005, 41(3): 221-225. |
[13] | 周志渊;陈昭;龙继东;马似如;杨福海;班华. 电阻法微型计算机控制气体渗碳[J]. , 1990, 26(2): 40-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||