• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (4): 113-120.doi: 10.3901/JME.2021.04.113

• 运载工程 • 上一篇    下一篇

扫码分享

电动载运工具锂离子电池低温极速加热方法研究

陈泽宇1,2, 熊瑞2, 李世杰1, 张渤1   

  1. 1. 东北大学机械工程与自动化学院 沈阳 110819;
    2. 北京理工大学机械与车辆学院 北京 100081
  • 收稿日期:2020-04-29 修回日期:2020-12-05 出版日期:2021-02-20 发布日期:2021-04-28
  • 通讯作者: 熊瑞(通信作者),男,1985年出生,教授,博士研究生导师,IET会士。主要研究方向为电动载运装备动力系统、动力电池系统和人工智能。E-mail:rxiong@bit.edu.cn
  • 作者简介:陈泽宇,男,1982年出生,副教授,博士研究生导师,北京理工大学访问学者。主要研究方向为电动汽车系统优化与动力电池安全管理。E-mail:chenzy@mail.neu.edu.cn;李世杰,女,1997年出生。主要研究方向为动力电池热管理与低温加热技术。E-mail:shijie02@stu.neu.edu.cn;张渤,男,1995年出生。主要研究方向为电动汽车电池管理系统。E-mail:zhangbo95@stu.neu.edu.cn
  • 基金资助:
    科技部重点研发计划(2017YFB0103802)和国家自然科学基金(51977029)资助项目。

Extremely Fast Heating Method of the Lithium-ion Battery at Cold Climate for Electric Vehicle

CHEN Zeyu1,2, XIONG Rui2, LI Shijie1, ZHANG Bo1   

  1. 1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819;
    2. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081
  • Received:2020-04-29 Revised:2020-12-05 Online:2021-02-20 Published:2021-04-28

摘要: 动力电池环境适应性,尤其是低温性能受限严重制约新能源汽车在高寒地区的安全、耐久、高效和长里程运行。为解决动力电池低温预热难题,提出一种基于短时大电流自放电的电触发极速自加热方法,以18650类锂离子动力电池为研究对象,分析加热过程中的动力电池产热及温升特性,进而设计基于动力电池温度预测的极速加热控制策略;结合COMSOL仿真系统模拟动力电池加热效果,进而开发带有极速加热样机的测试平台,测试结果表明,该方法可以实现快达0.65℃/s的瞬时加热速率,在87 s内将动力电池从环境温度-20℃加热到20℃,目标温度的控制误差仅0.4%,且该加热方法对动力电池寿命的影响很小,对动力电池模组加热时温升标准差小于2.7℃。最后对该加热方法的应用前景、所需进一步解决的科学问题及研究路线进行探讨。

关键词: 电动汽车, 锂离子动力电池, 极速加热, 热管理

Abstract: The environmental adaptability, especially the limited low temperature performance, of power battery severely restricts the safe, durable, efficient and long-range operation for new energy vehicles in high and cold regions. In order to resolve the technique problem of battery low-temperature preheating, an electric triggered extremely fast heating(XFH) method based on the short-time large current self-discharge is presented. For 18650 lithium-ion battery, the characteristics of battery heat generation and temperature rise in the XFH process are analyzed. Furthermore, to achieve the accurate heating effect, an XFH control strategy is proposed based on the battery temperature prediction. The battery heating performance is simulated by COMSOL simulation system, and then a test platform including the XFH prototype is developed. The test results show that the presented method can achieve the instantaneous heating rate as fast as 0.65 ℃/s and only takes 87 s to heat the battery from -20 ℃ to 20 ℃. The control error of the target temperature is only 0.4% and the heating method has little effect on the aging of battery. The standard deviation of temperature rise is less than 2.7 ℃ when heating the battery module. Finally, the application prospect of the presented heating method, the scientific problems needed to be further solved, and the research route are discussed.

Key words: electric vehicles, lithium-ion battery, extremely fast heating(XFH), thermal management

中图分类号: