• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (19): 241-249.doi: 10.3901/JME.2024.19.241

• 数字化设计与制造 • 上一篇    下一篇

扫码分享

3D打印制造约束下的多孔结构与路径协同优化方法

夏令伟1, 谢亿民2, 马国伟1   

  1. 1. 河北工业大学智慧基础设施研究院 天津 300401;
    2. 皇家墨尔本理工大学创新结构与材料中心 墨尔本 3001 澳大利亚
  • 收稿日期:2023-09-25 修回日期:2023-11-21 出版日期:2024-10-05 发布日期:2024-11-27
  • 作者简介:夏令伟,男,1993年出生,博士。主要从事3D打印路径优化和结构优化等方面的研究。E-mail:lingwei.xia@hhu.edu.cn;谢亿民,男,1963年出生,博士,教授,博士研究生导师。主要从事工程结构优化和新材料等方面的研究。E-mail:mike.xie@rmit.edu.au;马国伟(通信作者),男,1968年出生,博士,教授,博士研究生导师。主要从事3D打印智能建造、非连续变形数值计算等方面的研究。E-mail:guowei.ma@hebut.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(U20A20313)。

Co-optimization for 3D Printing Porous Structures and Paths under Manufacturing Constraint

XIA Lingwei1, XIE Yimin2, MA Guowei1   

  1. 1. Smart Infrastructure Research Institute, Hebei University of Technology, Tianjin 300401;
    2. Centre for Innovative Structures and Materials, RMIT University, Melbourne 3001 Australia
  • Received:2023-09-25 Revised:2023-11-21 Online:2024-10-05 Published:2024-11-27

摘要: 多孔结构具有优异的综合性能,得到广泛工程应用。相较于等材制造和减材制造,3D打印增材制造在多孔结构的制备上更加灵活、效率更高。然而,其复杂的拓扑形态导致打印路径的不连续和不均匀填充,降低成型质量和力学性能。针对上述问题,提出了基于Voronoi骨架的多孔结构与路径协同优化方法。在结构优化的基础上,通过施加制造约束考虑路径优化问题,生成适合3D打印的多孔结构。结构的材料分布可根据受力状态进行调整,以周期和梯度两种形态构造Voronoi多孔单元。结合深度优先检索算法,优化结构采用Voronoi骨架偏置而成的全局连续路径填充。计算结果显示协同优化方法解决了路径的整数倍和自交问题,实现了多孔结构的均匀打印;消除了路径断点和喷头空驶产生的打印缺陷。通过挤出成型增材制造技术验证了可行性。力学实验证明由于协同优化方法实现了多孔结构的高质量打印,打印构件的力学性能明显优于传统方法。本研究为实现3D打印多孔结构的高性能化、推动材料-结构-性能一体化设计具有重要作用。

关键词: 增材制造, 结构优化, 路径优化, 设计制造一体化

Abstract: Porous structures are widely used in engineering due to their superior comprehensive properties.Compared with traditional equal-material and subtractive manufacturing, 3D printing, as a process of additive manufacturing technology, exhibits significant advantages in manufacturing flexibility and efficiency for porous structures.However, the complicated topological form results in discontinuity and uneven filling of printing paths, thus decreasing the fabrication quality and mechanical performance.A co-optimization of structure and path based on Voronoi skeletons is developed to improve this situation.To generate porous structures suitable for 3D printing, path optimization is synergistically considered by applying a manufacturing constraint in the structural design.Periodic or graded Voronoi cells are constructed according to the mechanical condition, aiming to optimize the material layout.Discontinuous paths, which are generated via offsetting Voronoi skeletons, are connected to fulfill global continuity by introducing a depth-first search method.The calculation result indicates that the porous structures generated by the proposed co-optimization method are evenly fabricated by a path without any intersection and solved the issue of the integral multiple of path width.Additionally, printing defects caused by path breakpoints and null nozzle travel are eliminated.The feasibility of the proposed method is validated by the material extrusion additive manufacturing technology.The mechanical test demonstrates that the mechanical performance of porous structures optimized by the proposed method are higher than that of models fabricated by the conventional method due to better printing quality of the former.This research plays a significant role in fulfilling high performance, thus promoting the integrated design and fabrication of material-structure-performance for 3D printing porous structures.

Key words: additive manufacturing, structural optimization, path optimization, integrated design and fabrication

中图分类号: