机械工程学报 ›› 2024, Vol. 60 ›› Issue (17): 235-262.doi: 10.3901/JME.2024.17.235
黄金杰1,2,3, 赵欣1
收稿日期:
2023-09-11
修回日期:
2024-01-08
出版日期:
2024-09-05
发布日期:
2024-10-21
作者简介:
黄金杰(通信作者),男,1967年出生,博士,教授,博士研究生导师。主要研究方向为先进制造、计算机图形学和人工智能技术。E-mail:jjhuangps@163.com基金资助:
HUANG Jinjie1,2,3, ZHAO Xin1
Received:
2023-09-11
Revised:
2024-01-08
Online:
2024-09-05
Published:
2024-10-21
摘要: 3D打印为产品设计和制造方式带来了新的变革,同时也给分层工艺规划带来了新的挑战。为了提升制造质量,首先对分层计算优化问题进行了回顾,并简要阐述了各种处理方法,特别关注了多自由度增材制造系统在3D打印分层制造中的优势。接着,围绕近年来3D打印分层计算领域取得的重要成果,从平面分层策略和非平面分层策略两个角度,分析了这些研究的目标、算法思想以及研究成果。然后,讨论了前沿3D打印技术的分层计算研究进展,特别是从闭环打印控制和新型制造两个方向,揭示了3D打印分层技术的最新发展。最后对这些研究成果进行总结,并结合当前的技术发展水平,从研究和应用角度提出了尚待解决的问题和未来的发展方向,以期进一步推动3D打印优化研究的持续发展。
中图分类号:
黄金杰, 赵欣. 3D打印中的分层计算研究进展[J]. 机械工程学报, 2024, 60(17): 235-262.
HUANG Jinjie, ZHAO Xin. Survey on Slicing Computing in 3D Printing[J]. Journal of Mechanical Engineering, 2024, 60(17): 235-262.
[1] IAN GIBSON I G. Additive manufacturing technologies 3D printing, rapid prototyping, and direct digital manufacturing[M]. London:Springer, 2015 [2] SINGH S, SINGH G, PRAKASH C, et al. Current status and future directions of fused filament fabrication[J]. Journal of Manufacturing Processes, 2020, 55:288-306. [3] BHATT P M, MALHAN R K, SHEMBEKAR A V, et al. Expanding capabilities of additive manufacturing through use of robotics technologies:A survey[J]. Additive Manufacturing, 2020, 31:100933. [4] ZHANG P, WANG Z, LI J, et al. From materials to devices using fused deposition modeling:A state-of-art review[J]. Nanotechnology Reviews, 2020, 9(1):1594-1609. [5] VYAVAHARE S, TERAIYA S, PANGHAL D, et al. Fused deposition modelling:A review[J]. Rapid Prototyping Journal, 2020, 26(1):176-201. [6] MERCADO RIVERA F J, ROJAS ARCINIEGAS A J. Additive manufacturing methods:Techniques, materials, and closed-loop control applications[J]. The International Journal of Advanced Manufacturing Technology, 2020, 109(1-2):17-31. [7] BAI X, LIU Y, WANG G B, et al. The pattern of technological accumulation:The comparative advantage and relative impact of 3D printing technology[J]. Journal of Manufacturing Technology Management, 2017, 28(1):39-55. [8] THOMAS-SEALE L E J, KIRKMAN-BROWN J C, ATTALLAH M M, et al. The barriers to the progression of additive manufacture:Perspectives from UK industry[J]. International Journal of Production Economics, 2018, 198:104-118. [9] PENG G, DAOBING C, YAN Z, et al. Research status and prospect of additive manufacturing of intelligent materials[J]. Journal of Materials Engineering, 2022, 50(6):12-26. [10] SEFENE E M. State-of-the-art of selective laser melting process:A comprehensive review[J]. Journal of Manufacturing Systems, 2022, 63:250-274. [11] QIN J, HU F, LIU Y, et al. Research and application of machine learning for additive manufacturing[J]. Additive Manufacturing, 2022, 52:102691. [12] REBAIOLI L, MAGNONI P, FASSI I, et al. Process parameters tuning and online re-slicing for robotized additive manufacturing of big plastic objects[J]. Robotics and Computer-Integrated Manufacturing, 2019, 55:55-64. [13] 徐敬华, 盛红升, 张树有, 等. 基于邻接拓扑的流形网格模型层切多连通域构建方法[J]. 计算机辅助设计与图形学学报, 2018, 30(1):180-190. XU Jinghua, SHENG Hongsheng, ZHANG Shuyou, et al. Construction method of layer cut multiconnected domains for manifold mesh model based on adjacency topology[J]. Journal of Computer Aided Design and Graphics, 2018, 30(1):180-190. [14] MINETTO R, VOLPATO N, STOLFI J, et al. An optimal algorithm for 3D triangle mesh slicing[J]. Computer-Aided Design, 2017, 92:1-10. [15] 戴宁, 廖文和, 陈春美. STL数据快速拓扑重建关键算法[J]. 计算机辅助设计与图形学学报, 2005, 17(11):2447-2452. DAI Ning, LIAO Wenhe, CHEN Chunmei. Key algorithms for rapid topology reconstruction of STL data[J]. Journal of Computer-Aided Design and Computer Graphics, 2005, 17(11):2447-2452. [16] BAHNINI I, UZ ZAMAN U K, RIVETTE M, et al. Computer-aided design (CAD) compensation through modeling of shrinkage in additively manufactured parts[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(9-10):3999-4009. [17] LIU J, LIU C, BAI Y, et al. Layer-wise spatial modeling of porosity in additive manufacturing[J]. IISE Transactions, 2018, 51(2):109-123. [18] VYAVAHARE S, KUMAR S, PANGHAL D. Experimental study of surface roughness, dimensional accuracy and time of fabrication of parts produced by fused deposition modelling[J]. Rapid Prototyping Journal, 2020, 26(9):1535-1554. [19] ARMILLOTTA A. Simulation of edge quality in fused deposition modeling[J]. Rapid Prototyping Journal, 2019, 25(3):541-554. [20] ZHANG Y, BERNARD A, GUPTA R K, et al. Feature based building orientation optimization for additive manufacturing[J]. Rapid Prototyping Journal, 2016, 22(2):358-376. [21] AL-AHMARI A M, ABDULHAMEED O, KHAN A A. An automatic and optimal selection of parts orientation in additive manufacturing[J]. Rapid Prototyping Journal, 2018, 24(4):698-708. [22] ZHANG Y, BERNARD A, HARIK R, et al. Build orientation optimization for multi-part production in additive manufacturing[J]. Journal of Intelligent Manufacturing, 2015, 28(6):1393-1407. [23] CHRISTIANSEN A N, SCHMIDT R, BAERENTZEN J A. Automatic balancing of 3D models[J]. Computer-Aided Design, 2015, 58:236-241. [24] MATOS M A, ROCHA A M A C, PEREIRA A I. Improving additive manufacturing performance by build orientation optimization[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(5-6):1993-2005. [25] EZAIR B, MASSARWI F, ELBER G. Orientation analysis of 3D objects toward minimal support volume in 3D-printing[J]. Computers & Graphics, 2015, 51:117-124. [26] OH Y, ZHOU C, BEHDAD S. Part decomposition and 2D batch placement in single-machine additive manufacturing systems[J]. Journal of Manufacturing Systems, 2018, 48:131-139. [27] DEGLIN A, BERNARD A. A knowledge-based environment for modelling and computer-aided process planning of rapid manufacturing processes[C]//Proceedings of the 3rd Integrated Design and Manufacturing in Mechanical Engineering Conference, Montreal, Canada, F May, 2000. Springer:DORDRECHT, 2002. [28] PAPAZETIS G, VOSNIAKOS G-C. Mapping of deposition-stable and defect-free additive manufacturing via material extrusion from minimal experiments[J]. The International Journal of Advanced Manufacturing Technology, 2018, 100(9-12):2207-19. [29] ZAMAN U K U, BOESCH E, SIADAT A, et al. Impact of fused deposition modeling (FDM) process parameters on strength of built parts using Taguchi's design of experiments[J]. The International Journal of Advanced Manufacturing Technology, 2018, 101(5-8):1215-26. [30] CAMPOSECO-NEGRETE C. Optimization of printing parameters in fused deposition modeling for improving part quality and process sustainability[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(7-8):2131-47. [31] MOHAMED O A, MASOOD S H, BHOWMIK J L. Optimization of fused deposition modeling process parameters for dimensional accuracy using I-optimality criterion[J]. Measurement, 2016, 81:174-96. [32] WANG S, D'HOOGE D R, DAELEMANS L, et al. The transferability and design of commercial printer settings in PLA/PBAT fused filament fabrication[J]. Polymers (Basel), 2020, 12(11):2573. [33] MOHAMED O A, MASOOD S H, BHOWMIK J L. Mathematical modeling and FDM process parameters optimization using response surface methodology based on Q-optimal design[J]. Applied Mathematical Modelling, 2016, 40(23-24):10052-10073. [34] ARMILLOTTA A, CAVALLARO M. Edge quality in fused deposition modeling:I. Definition and analysis[J]. Rapid Prototyping Journal, 2017, 23(6):1079-1087. [35] ARMILLOTTA A, BIANCHI S, CAVALLARO M, et al. Edge quality in fused deposition modeling:II. experimental verification[J]. Rapid Prototyping Journal, 2017, 23(4):686-695. [36] BOSCHETTO A, BOTTINI L. Accuracy prediction in fused deposition modeling[J]. Int J Adv Manuf Technol, 2014, 73(5-8):913-928. [37] LALEHPOUR A, BARARI A. A more accurate analytical formulation of surface roughness in layer-based additive manufacturing to enhance the product's precision[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(9-12):3793-3804. [38] WANG P, ZOU B, DING S. Modeling of surface roughness based on heat transfer considering diffusion among deposition filaments for FDM 3D printing heat-resistant resin[J]. Applied Thermal Engineering, 2019, 161:114064. [39] RUPAL B S, ANWER N, SECANELL M, et al. Geometric tolerance and manufacturing assemblability estimation of metal additive manufacturing (AM) processes[J]. Materials & Design, 2020, 194:108842. [40] D'AMICO A, PETERSON A M. An adaptable FEA simulation of material extrusion additive manufacturing heat transfer in 3D[J]. Additive Manufacturing, 2018, 21:422-430. [41] AFONSO J A, ALVES J L, CALDAS G, et al. Influence of 3D printing process parameters on the mechanical properties and mass of PLA parts and predictive models[J]. Rapid Prototyping Journal, 2021, 27(3):487-495. [42] WANG J, WANG Y, SHI J. On efficiency and effectiveness of finite volume method for thermal analysis of selective laser melting[J]. Engineering Computations, 2020, 37(6):2155-2175. [43] KUNDAKCIOGLU E, LAZOGLU I, RAWAL S. Transient thermal modeling of laser-based additive manufacturing for 3D freeform structures[J]. The International Journal of Advanced Manufacturing Technology, 2015, 85(1-4):493-501. [44] ARBEITER F, SPOERK M, WIENER J, et al. Fracture mechanical characterization and lifetime estimation of near-homogeneous components produced by fused filament fabrication[J]. Polymer Testing, 2018, 66:105-113. [45] KUZNETSOV V E, TAVITOV A G, URZHUMTSEV O D, et al. Hardware factors influencing strength of parts obtained by fused filament fabrication[J]. Polymers (Basel), 2019, 11(11):1870. [46] SALAZAR-MARTIN A G, GARCIA-GRANADA A A, REYES G, et al. Time-dependent mechanical properties in polyetherimide 3D-printed parts are dictated by isotropic performance being accurately predicted by the generalized time hardening model[J]. Polymers (Basel), 2020, 12(3):678. [47] CASAVOLA C, CAZZATO A, MORAMARCO V, et al. Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory[J]. Materials & Design, 2016, 90:453-458. [48] LIGON S C, LISKA R, STAMPFL J, et al. Polymers for 3D printing and customized additive manufacturing[J]. Chem Rev, 2017, 117(15):10212-10290. [49] BAHRAMI B, AYATOLLAHI M R, SEDIGHI I, et al. The effect of in-plane layer orientation on mixed-mode I-II fracture behavior of 3D-printed poly-carbonate specimens[J]. Engineering Fracture Mechanics, 2020, 231:107018. [50] GUESSASMA S, BELHABIB S, NOURI H. Microstructure and mechanical performance of 3D printed wood-PLA/PHA using fused deposition modelling:Effect of printing temperature[J]. Polymers (Basel), 2019, 11(11):1778. [51] ZISOPOL D G, PORTOACA A-I, PLOIESTI I N, et al. A Statistical approach of the flexural strength of PLA and ABS 3D printed parts[J]. Engineering Technology & Applied Science Research, 2022, 12(2):8248-8252. [52] JAYASHURIYA M, GAUTAM S, ARAVINTH A N, et al. Studies on the effect of part geometry and process parameter on the dimensional deviation of additive manufactured part using ABS material[J]. Progress in Additive Manufacturing, 2022, 7(6):1183-1193. [53] XIA C, PAN Z, POLDEN J, et al. Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning[J]. Journal of Intelligent Manufacturing, 2021, 33(5):1467-1482. [54] MOHAMED O A, MASOOD S H, BHOWMIK J L. Experimental investigation for dynamic stiffness and dimensional accuracy of FDM manufactured part using IV-Optimal response surface design[J]. Rapid Prototyping Journal, 2017, 23(4):736-749. [55] SRIVASTAVA M, MAHESHWARI S, KUNDRA T K, et al. Experimental investigation of process parameters for build time estimation in FDM process using RSM technique[C]//Proceedings of the 28th International Conference on CAD/CAM, Robotics and Factories of the Future (CARs and FoF), Int Soc Prod Enhancement, Kolaghat, INDIA, F Jan 06-08, 2016. Springer-Verlag Berlin:BERLIN, 2016. [56] PATEL Y, KSHATTRIYA A, SINGAMNENI S B, et al. Application of curved layer manufacturing for preservation of randomly located minute critical surface features in rapid prototyping[J]. Rapid Prototyping Journal, 2015, 21(6):725-734. [57] MOHAMED O A, MASOOD S H, BHOWMIK J L. A parametric investigation of the friction performance of PC-ABS parts processed by FDM additive manufacturing process[J]. Polymers for Advanced Technologies, 2017, 28(12):1911-1918. [58] WANG W M, SHAO H L, LIU X P, et al. Printing direction optimization through slice number and support minimization[J]. IEEE Access, 2020, 8:75646-75655. [59] DESWAL S, NARANG R, CHHABRA D. Modeling and parametric optimization of FDM 3D printing process using hybrid techniques for enhancing dimensional preciseness[J]. International Journal on Interactive Design and Manufacturing (IJIDeM), 2019, 13(3):1197-214. [60] LI Z, ZHANG Z, SHI J, et al. Prediction of surface roughness in extrusion-based additive manufacturing with machine learning[J]. Robotics and Computer-Integrated Manufacturing, 2019, 57:488-95. [61] OH Y, SHARP M, SPROCK T, et al. Neural network-based build time estimation for additive manufacturing:A performance comparison[J]. Journal of Computational Design and Engineering, 2021, 8(5):1243-1256. [62] PADHI S K, SAHU R K, MAHAPATRA S S, et al. Optimization of fused deposition modeling process parameters using a fuzzy inference system coupled with Taguchi philosophy[J]. Advances in Manufacturing, 2017, 5(3):231-242. [63] SAI T, PATHAK V K, SRIVASTAVA A K. Modeling and optimization of fused deposition modeling (FDM) process through printing PLA implants using adaptive neuro-fuzzy inference system (ANFIS) model and whale optimization algorithm[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(12):617. [64] RAJU M, GUPTA M K, BHANOT N, et al. A hybrid PSO-BFO evolutionary algorithm for optimization of fused deposition modelling process parameters[J]. Journal of Intelligent Manufacturing, 2018, 30(7):2743-2758. [65] VAHABLI E, RAHMATI S. Improvement of FDM parts' surface quality using optimized neural networks-medical case studies[J]. Rapid Prototyping Journal, 2017, 23(4):825-842. [66] ALICASTRO M, FERONE D, FESTA P, et al. A reinforcement learning iterated local search for makespan minimization in additive manufacturing machine scheduling problems[J]. Computers & Operations Research, 2021, 131:14. [67] GE J Y, WANG Y, LI J Y, et al. A reinforcement learning-based path planning method for complex thin-walled structures in 3D printing[C]//Proceedings of the 5th International Conference on Innovation in Artificial Intelligence (ICIAI), Electr Network, F Mar 05-08, 2021. Assoc Computing Machinery:New York, 2021. [68] CHENG R, JIN Y C, OLHOFER M, et al. A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5):773-791. [69] COELLO C A C, LAMONT G B, VAN VELDHUIZEN D A. Evolutionary algorithms for solving multi-objective problems[M]. New York:Springer, 2007. [70] VAHABLI E, RAHMATI S. Improvement of FDM parts' surface quality using optimized neural networks-medical case studies[J]. Rapid Prototyping Journal, 2017, 23(4):825-842. [71] 吴陈铭, 戴澄恺, 王昌凌, 等. 多自由度3D打印技术研究进展综述[J]. 计算机学报, 2019, 42(9):1918-1938. WU Chenming, DAI Chengkai, WANG Changling, et al. A review of research progress on multi-degree-of-freedom 3D printing technology[J]. Chinese Journal of Computers, 2019, 42(9):1918-1938. [72] CUAN-URQUIZO E, MARTíNEZ-MAGALLANES M, CRESPO-SáNCHEZ S E, et al. Additive manufacturing and mechanical properties of lattice-curved structures[J]. Rapid Prototyping Journal, 2019, 25(5):895-903. [73] JIN Y, DU J, HE Y, et al. Modeling and process planning for curved layer fused deposition[J]. The International Journal of Advanced Manufacturing Technology, 2016, 91(1-4):273-285. [74] SHEN H, DIAO H, YUE S, et al. Fused deposition modeling five-axis additive manufacturing:machine design, fundamental printing methods and critical process characteristics[J]. Rapid Prototyping Journal, 2018, 24(3):548-561. [75] SONG X, PAN Y, CHEN Y. Development of a low-cost parallel kinematic machine for multidirectional additive manufacturing[J]. Journal of Manufacturing Science and Engineering, 2015, 137(2):021005. [76] EDOIMIOYA N, CHOU C H, OKWUDIRE C E. Vibration compensation of delta 3D printer with position-varying dynamics using filtered B-splines[J]. Int J Adv Manuf Technol, 2023, 125:2851-2868. [77] ZHAO D, LI T, SHEN B, et al. A multi-DOF rotary 3D printer:machine design, performance analysis and process planning of curved layer fused deposition modeling (CLFDM)[J]. Rapid Prototyping Journal, 2020, 26(6):1079-1093. [78] WU R, PENG H, GUIMBRETIÈRE F, et al. Printing arbitrary meshes with a 5DOF wireframe printer[J]. ACM Transactions on Graphics, 2016, 35(4):1-9. [79] DAI C, WANG C C L, WU C, et al. Support-free volume printing by multi-axis motion[J]. ACM Transactions on Graphics, 2018, 37(4):1-14. [80] JENSEN M L, MAHSHID R, D'ANGELO G, et al. Toolpath strategies for 5DOF and 6DOF extrusion-based additive manufacturing[J]. Applied Sciences, 2019, 9(19):4168. [81] DING Y, DWIVEDI R, KOVACEVIC R. Process planning for 8-axis robotized laser-based direct metal deposition system:A case on building revolved part[J]. Robotics and Computer-Integrated Manufacturing, 2017, 44:67-76. [82] LI L, HAGHIGHI A, YANG Y. A novel 6-axis hybrid additive-subtractive manufacturing process:Design and case studies[J]. Journal of Manufacturing Processes, 2018, 33:150-160. [83] YERAZUNIS W S, BARNWELL III J C, NIKOVSKI D N. Strengthening ABS, nylon, and polyester 3D printed parts by stress tensor aligned deposition paths and five-axis printing[C]//Proceedings of the 2016 International Solid Freeform Fabrication Symposium, 2016. University of Texas at Austin. [84] SHEMBEKAR A V, YOON Y J, KANYUCK A, et al. Trajecttory planning for conformal 3D printing using non-planer layers[C]//Proceedings of the 38th American-Society-of-Mechanical-Engineers (ASME) Computers and Information in Engineering (CIE) Conference in Conjunction with the International Design Engineering Technical Conferes (IDETC), Quebec City, CANADA, F Aug 26-29, 2018. Amer. Soc. Mechanical Engineers:New York, 2018. [85] MCCLINTON E, WYLIE B, MOORE C A, et al. Creating a high and homogenous resolution workspace for SCARA based 3D Printers[C]//Proceedings of the 6th International Conference on Mechanical, Materials and Manufacturing (ICMMM), Boston, MA, Oct 12-14, 2019. IOP Publishing Ltd:BRISTOL, 2019. [86] BEHANDISH M, NELATURI S, DE KLEER J. Automated process planning for hybrid manufacturing[J]. Computer-Aided Design, 2018, 102:115-127. [87] LIAO Z R, AXINTE D A. On chip formation mechanism in orthogonal cutting of bone[J]. Int J Mach Tools Manuf, 2016, 102:41-55. [88] STRONG D, SIRICHAKWAL I, MANOGHARAN G P, et al. Current state and potential of additive-hybrid manufacturing for metal parts[J]. Rapid Prototyping Journal, 2017, 23(3):577-588. [89] WANG Y, GU Z, SONG L, et al. Speeding up 3D printing using multi-head slicing algorithms[C]//20175th International Conference on Enterprise Systems (ES). 2017:99-106.10.1109/es.2017.23 [90] HUANG Y J, ZHANG J Y, HU X, et al. Framefab:robotic fabrication of frame shapes[J]. Acm Transactions on Graphics, 2016, 35(6):11. [91] CHALVIN M, CAMPOCASSO S, HUGEL V, et al. Layer-by-layer generation of optimized joint trajectory for multi-axis robotized additive manufacturing of parts of revolution[J]. Robotics and Computer-Integrated Manufacturing, 2020, 65:101960. [92] SHEMBEKAR A V, YOON Y J, KANYUCK A, et al. Generating robot trajectories for conformal three-dimensional printing using nonplanar layers[J]. Journal of Computing and Information Science in Engineering, 2019, 19(3):031011. [93] TSAO C-C, CHANG H-H, LIU M-H, et al. Freeform additive manufacturing by vari-directional vari-dimensional material deposition[J]. Rapid Prototyping Journal, 2018, 24(2):379-394. [94] AHARI H, KHAJEPOUR A, BEDI S. Optimization of slicing direction in laminated tooling for volume deviation reduction[J]. Assembly Automation, 2013, 33(2):139-148. [95] DAS P, CHANDRAN R, SAMANT R, et al. Optimum part build orientation in additive manufacturing for minimizing part errors and support structures[J]. Procedia Manufacturing, 2015, 1:343-354. [96] LUO N, WANG Q. Fast slicing orientation determining and optimizing algorithm for least volumetric error in rapid prototyping[J]. The International Journal of Advanced Manufacturing Technology, 2015, 83(5-8):1297-1313. [97] DANJOU S, KÖHLER P. Improving part quality and process efficiency in layered manufacturing by adaptive slicing[J]. Virtual and Physical Prototyping, 2010, 5(4):183-8. [98] SINGHAL S K, JAIN P K, PANDEY P M. Adaptive slicing for sls prototyping[J]. Computer-Aided Design and Applications, 2008, 5(1-4):412-423. [99] YU C, QIE L, JING S, et al. Personalized design of part orientation in additive manufacturing[J]. Rapid Prototyping Journal, 2019, 25(10):1647-1660. [100] HERNANDEZ-CONTRERAS A, RUIZ-HUERTA L, CABALLERO-RUIZ A, et al. Extended CT void analysis in fdm additive manufacturing components[J]. Materials (Basel), 2020, 13(17):3831. [101] BADINI C, PADOVANO E, DE CAMILLIS R, et al. Preferred orientation of chopped fibers in polymer-based composites processed by selective laser sintering and fused deposition modeling:Effects on mechanical properties[J]. Journal of Applied Polymer Science, 2020, 137(38):49152. [102] PARK S J, PARK J H, LEE K H, et al. Deposition strength of specimens manufactured using fused deposition modeling type 3D printer[J]. Polymer Korea, 2016, 40(6):846. [103] WANG K, LI S, RAO Y, et al. Flexure behaviors of abs-based composites containing carbon and kevlar fibers by material extrusion 3D printing[J]. Polymers (Basel), 2019, 11(11):1879. [104] ULU E, KORKMAZ E, YAY K, et al. Enhancing the structural performance of additively manufactured objects through build orientation optimization[J]. Journal of Mechanical Design, 2015, 137(11):9. [105] ALAFAGHANI A, QATTAWI A, ALRAWI B, et al. Experimental optimization of fused deposition modelling processing parameters:A design-for-manufacturing approach[C]//Proceedings of the 45th SME North American Manufacturing Research Conference (NAMRC), Univ So Calif, Los Angeles, CA, F Jun 04-08, 2017, Elsevier Science Bv:AMSTERDAM, 2017. [106] ZHAO H M, HE Y, FU J Z, et al. Inclined layer printing for fused deposition modeling without assisted supporting structure[J]. Robotics and Computer-Integrated Manufacturing, 2018, 51:1-13. [107] GORSKI F, WICHNIAREK R, KUCZKO W, et al. Selection of fused deposition modeling process parameters using finite element analysis and genetic algorithms[J]. J Mult-Valued Log Soft Comput, 2019, 32(3-4):293-311. [108] LALEGANI DEZAKI M, MOHD ARIFFIN M K A. The effects of combined infill patterns on mechanical properties in FDM process[J]. Polymers (Basel), 2020, 12(12):2792. [109] KHADILKAR A, WANG J, RAI R. Deep learning-based stress prediction for bottom-up SLA 3D printing process[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(5-8):2555-2569. [110] SOMASHEKARA M A, NAVEENKUMAR M, KUMAR A, et al. Investigations into effect of weld-deposition pattern on residual stress evolution for metallic additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2016, 90(5-8):2009-2025. [111] ZHOU Y, LU H, WANG G, et al. Voxelization modelling based finite element simulation and process parameter optimization for fused filament fabrication[J]. Materials & Design, 2020, 187:108409. [112] KIM D J, HONG S G, DUARTE C A. Generalized finite element analysis using the preconditioned conjugate gradient method[J]. Applied Mathematical Modelling, 2015, 39(19):5837-5848. [113] THOMPSON M K, THOMPSON J M. ANSYS mechanical APDL for finite element analysis[M]. Oxford:Butterworth-Heinemann, 2017. [114] CHANG J, ZHANG J J, YOU L H. Physically-based deformations:Copy and paste[J]. Visual Comput, 2007, 23(1):71-82. [115] ZENG K, PAL D, PATIL N, et al. A new dynamic mesh method applied to the simulation of selective laser melting[C]//Proceedings of the 2013 International Solid Freeform Fabrication Symposium, F, 2013. University of Texas at Austin. [116] LIU J, ANDERSON K L, SRIDHAR N. Direct simulation of polymer fused deposition modeling (FDM)-An implementation of the multi-phase viscoelastic solver in openfoam[J]. International Journal of Computational Methods, 2019, 17(01). [117] PANDA B N, SHANKHWAR K, GARG A, et al. Performance evaluation of warping characteristic of fused deposition modelling process[J]. The International Journal of Advanced Manufacturing Technology, 2016, 88(5-8):1799-1811. [118] ALIHEIDARI N, CHRIST J, TRIPURANENI R, et al. Interlayer adhesion and fracture resistance of polymers printed through melt extrusion additive manufacturing process[J]. Materials & Design, 2018, 156:351-361. [119] SPOERK M, ARBEITER F, CAJNER H, et al. Parametric optimization of intra- and inter-layer strengths in parts produced by extrusion-based additive manufacturing of poly(lactic acid)[J]. Journal of Applied Polymer Science, 2017, 134(41):45401. |
[1] | 张云舒, 吴斌涛, 赵昀, 丁东红, 潘增喜, 李会军. 电弧熔丝增材制造传热传质数值模拟研究现状与展望[J]. 机械工程学报, 2024, 60(8): 65-80. |
[2] | 李坤, 吉辰, 白生文, 蒋斌, 潘复生. 高性能镁合金电弧增材制造技术研究现状与展望[J]. 机械工程学报, 2024, 60(7): 289-311. |
[3] | 陈伟, 赵杰, 朱利斌, 曹海波. 增材制造低活化钢研究现状及展望[J]. 机械工程学报, 2024, 60(7): 312-333. |
[4] | 杜文博, 李晓亮, 李霞, 胡深恒, 朱胜. 搅拌摩擦沉积增材技术研究现状[J]. 机械工程学报, 2024, 60(7): 374-384. |
[5] | 郑洋, 赵梓昊, 刘伟, 余政哲, 牛伟, 雷贻文, 孙荣禄. 高性能镁合金增材制造技术研究进展[J]. 机械工程学报, 2024, 60(7): 385-400. |
[6] | 杜军, 王谦元, 何冀淼, 张永恒, 魏正英. TIG电弧辅助熔滴沉积增材制造中熔滴偏距对熔池形貌的影响机制研究[J]. 机械工程学报, 2024, 60(5): 219-230. |
[7] | 蒋周明矩, 熊异, 王柏村. 面向工业5.0的人机协作增材制造[J]. 机械工程学报, 2024, 60(3): 238-253. |
[8] | 石毅磊, 权银洙, 许海鹰, 王壮, 马文龙, 彭勇. 丝束同轴冷阴极电子枪电子束注腰位置影响因素分析[J]. 机械工程学报, 2024, 60(3): 328-336. |
[9] | 荣鹏, 成靖, 邓鸿文, 陶常安, 高川云, 冉先喆, 程序, 汤海波, 刘栋. 不同热处理对激光定向能量沉积制造TC4钛合金组织和拉伸性能的影响[J]. 机械工程学报, 2024, 60(20): 99-107. |
[10] | 夏令伟, 谢亿民, 马国伟. 3D打印制造约束下的多孔结构与路径协同优化方法[J]. 机械工程学报, 2024, 60(19): 241-249. |
[11] | 赵欣, 黄金杰. 基于RSM-RVEA的FDM增材制造工艺参数优化方法[J]. 机械工程学报, 2024, 60(19): 277-297. |
[12] | 张明康, 师文庆, 徐梅珍, 王迪, 陈杰. 隐式曲面多孔结构压缩性能与流体压降性能研究[J]. 机械工程学报, 2024, 60(18): 394-406. |
[13] | 孙江涛, 张净凯, 程坦, 范志永, 叶春生, 蔡道生, 魏青松. 吸热墨水喷射3D打印实验平台研制与自制墨水打印试验研究[J]. 机械工程学报, 2024, 60(17): 263-271. |
[14] | 侯佳奇, 张广明, 于志浩, 李印, 马令轩, 韩志峰, 石凯, 郭辰旭, 兰红波. 平板电极电场驱动多喷头喷射高效微3D打印方法和规律研究[J]. 机械工程学报, 2024, 60(17): 310-320. |
[15] | 喻康, 傅建中, 贺永. 面向软组织缺损修复的组织工程支架研究进展[J]. 机械工程学报, 2024, 60(15): 255-271. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||