[1] 王拥军, 李子孝, 谷鸿秋, 等. 中国卒中报告2020(中文版)[J]. 中国卒中杂志, 2022, 17(5):433-447. WANG Yongjun, LI Zixiao, GU Hongqiu, et al. China stroke statistics 2020[J]. Chinese Journal of Stroke, 2022, 17(5):433-447. [2] KLAMROTH-MARGANSKA V, BLANCO J, CAMPEN K, et al. Three-dimensional, task-specific robot therapy of the arm after stroke:a multicenter, parallel-group randomised trial[J]. Lancet Neurology, 2014, 13(2):159-166. [3] CHAN J P, CLUNE J, SHAH S B, et al. Examination of the human motor endplate after brachial plexus injury with two-photon microscopy[J]. Muscle & Nerve, 2020, 61(3):390-395. [4] SAKA N, HOSHIKA S, INOUE M, et al. Below- or above-elbow immobilization in conservative treatment of distal radius fractures:a systematic review and meta-analysis[J]. Injury- International of the Care of the Injured, 2022, 53(2):250-258. [5] SHEAHAN P J, CASHABACK J G A, FISCHER S L. Evaluating the ergonomic benefit of a wrist brace on wrist posture, muscle activity, rotational stiffness, and peak shovel-ground impact force during a simulated tree-planting task[J]. Human Factors, 2017, 59(6):911-924. [6] GUPTA A, O'MALLEY M K, PATOGLU V, et al. Design, control and performance of RiceWrist:a force feedback wrist exoskeleton for rehabilitation and training[J]. International Journal of Robotics Research, 2008, 27(2):233-251. [7] ROSE C G, SERGI F, YUN Y, et al. Characterization of a hand-wrist exoskeleton, READAPT, via kinematic analysis of redundant pointing tasks[C]//Proceedings of the International Conference IEEE Rehabilitation Robotics, 2015:205-210. [8] PEZENT E, ROSE C G, DESHPANDE A D, et al. Design and characterization of the OpenWrist:a robotic wrist exoskeleton for coordinated hand-wrist rehabilitation[C]//Proceedings of the International Conference IEEE Rehabilitation Robotics, 2017:720-725. [9] KREBS H I, VOLPE B T, WILLIAMS D, et al. Robot-aided neurorehabilitation:a robot for wrist rehabilitation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(3):327-335. [10] LAMBELET C, TEMIRALIULY D, SIEGENTHALER M, et al.Characterization and wearability evaluation of a fully portable wrist exoskeleton for unsupervised training after stroke[J]. Journal of NeuroEngineering and Rehabilitation, 2020, 17(1):132. [11] DRAGUSANU M, IQBAL M Z, BALDI T L, et al. Design, development, and control of a hand/wrist exoskeleton for rehabilitation and training[J]. IEEE Transactions on Robotics, 2022, 38(3):1472-1488. [12] YANG S Q, LI M, WANG T C, et al. A novel wrist rehabilitation exoskeleton using 3d-printed multi-segment mechanism[C]//2021 43RD Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2021:4769-4772. [13] SHI K, SONG A G, LI H J, et al. A cable-driven three-dof wrist rehabilitation exoskeleton with improved performance[J]. Frontiers in Neurorobotics, 2021, 15:664062. [14] CUI X, CHEN W, AGRAWA S K, et al. A novel customized cable-driven robot for 3-dof wrist and forearm motion training[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), 2014:3579-3584. [15] YU Y, CHEN C, ZHAO J M, et al. Surface electromyography image driven torque estimation of multi-dof wrist movements[J]. IEEE Transactions on Industrial Electronics, 2021, 69(1):795-804. [16] ZHANG Z, CHU B, LIU Y H, et al.Multiperiodic repetitive control for functional electrical stimulation-based wrist tremor suppression[J]. IEEE Transactions on Control System Technology, 2022, 30(4):1494-1509. [17] CAPPELLO L, ELANGOVAN N, CONTU S, et al. Robot-aided assessment of wrist proprioception[J]. Frontiers in Human Neuroscience, 2015, 9:198. [18] ANDRIKOPOULOS G, NIKOLAKOPOULOS G, MANESIS S. Design and development of an exoskeletal wrist prototype via pneumatic artificial muscles[J]. Meccanica, 2015, 50(11):2709-2730. [19] CHOI H, KANG B B, JUNG B K, et al. Exo-wrist:a soft tendon-driven wrist-wearable robot with active anchor for dart-throwing motion in hemiplegic patients[J]. IEEE Robotics and Automation Letters, 2019, 4(4):4499-4506. [20] LI N, YANG T, YANG Y, et al. Bioinspired musculoskeletal model-based soft wrist exoskeleton for stroke rehabilitation[J]. Journal of Bionic Engineering, 2020, 17(6):1163-1174. [21] ERWIN A, O'MALLEY M K, RESS D, et al. Kinesthetic feedback during 2dof wrist movements via a novel MR-compatible robot[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(9):1489-1499. [22] AL-FAHAAM H, DAVIS S, NEFTI-MEZIANI S. Wrist rehabilitation exoskeleton robot based on pneumatic soft actuators[C]//Proceedings of the International Conference Studies in Applied Mathematics, 2016:491-496. [23] SHI K, SONG A, LI Y, et al. A cable-driven three-DOF wrist rehabilitation exoskeleton with improved performance[J]. Frontiers in Neurorobotics, 2021, 15:664062. [24] LI N, YANG T, YANG Y, et al. Bioinspired musculoskeletal model-based soft wrist exoskeleton for stroke rehabilitation[J].Journal of Bionic Engineering, 2020, 6:1163-1174. [25] ZHANG L Y, YUS P, LI J F, et al. Design of a parallel wrist rehabilitation robot and analysis of physiological effect on training[J]. IEEE/ASME Transactions on Mechatronics, 2023, 99(1):1-14. [26] NYCZ C J, MEIER T B, CARVALHO P, et al. Design criteria for hand exoskeletons:measurement of forces needed to assist finger extension in traumatic brain injury patients[J]. IEEE Robotics and Automation Letters, 2018, 4:3285-3292. [27] ZHANG L Y, LI J F, CUI Y, et al. Design and performance analysis of a parallel wrist rehabilitation robot (PWRR)[J]. Robotics and Autonomous Systems, 2020, 125:103390. [28] 许允斗, 姚建涛, 赵永生. 基于螺旋理论的锻造操作机构型综合[J]. 中国机械工程, 2008, 43(2):186-200. XU Yundou, YAO Jiantao, ZHAO Yongsheng. Type synthesis of forging manipulators based on screw theory[J]. China Mechanical Engineering, 2008, 43(2):186-200. [29] 黄真, 孔令富, 方跃法. 并联机器人机构学理论及控制[M]. 北京:机械工业出版社, 1997. HUANG Zhen, KONG Lingfu, FANG Yuefa. Theory and control of parallel robot mechanism[M]. Beijing:Mechanical Industry Press, 1997. [30] YOSHIKAWA T. Manipulability of robotic mechanism[J]. International Journal of Robotics Research, 1987, 4(2):3-9. [31] WANG M, YANG A. Dynamic learning from adaptive neural control of robot manipulators with prescribed performance[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(8), 2244-2255. [32] LI Y, XU Q. Stiffness analysis for a 3-PUU parallel kinematic machine[J]. Mechanism and Machine Theory, 2008, 43(2):186-200 |