[1] WEI Jing,SUN Qinchao,SUN Wei,et al. Load-sharing characteristic of multiple pinions driving in tunneling boring machine[J]. Chinese Journal of Mechanical Engineering,2013,26(3):532-540. [2] OZDEMIR L. Development of theoretical equation for predicting tunnel boreability[D]. Golden:Colorado School of Mines,1977. [3] ROSTAMI J,OZDEMIR L. A new model for performance prediction of hard rock TBMs[C]//Proceedings of the Rapid Excavation and Tunneling Conference,June 13-17,1993,Colorado School of Mines,Golden. Boston:Society For Mining,Metallogy & Exploration,1993:793-793. [4] YAGIZ S. A model for the prediction of tunnel boring machine performance[C]//Proceedings of the 10th IAEG Conference on Engineering Geology for Tomorrow's Cities,Substructures and Underground Space,Nottingham. UK:The Geological Society of London,2006:383. [5] ARMAGHANI D J,YAGIZ S,MOHAMAD E T,et al. Prediction of TBM performance in fresh through weathered granite using empirical and statistical approaches[J]. Tunnelling and Underground Space Technology,2021,118:104183.1-104183.26. [6] 王湘怡,周小雄,卢建炜,等. 基于机器学习的TBM隧道掘进岩爆预测[J]. 施工技术,2022,51(20):1-7. WANG Xiangyi,ZHOU Xiaoxiong,LU Jianwei,et al. Prediction of rock burst in tbm tunnel excavation based on machine learning[J]. Construction Technology,2022,51(20):1-7. [7] ARMAGHANI D J,Mohamad E T,NARAYANASAMY M S,et al. Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition[J]. Tunnelling and Underground Space Technology,2017(63):29-43. [8] CHEN Xu,LIU Xiaoli,WANG Enzhi,et al. Prediction of tunnel boring machine operating parameters using various machine learning algorithms[J]. Tunnelling and Underground Space Technology,2021,109:103699. [9] JING Liujie,LI Jianbin,ZHANG Na,et al. A TBM advance rate prediction method considering the effects of operating factors[J]. Tunnelling and Underground Space Technology,2021,107:103620. [10] 姜兴宇,高超,高伟贤,等. 基于库仑-莫尔准则的盘形滚刀破岩力预测研究[J]. 机械工程学报,2016,52(20):126-136. JIANG Xingyu,GAO Chao,GAO Weixian,et al. Prediction of rock breaking force of disc cutters based on coulomb moore criterion[J]. Journal of Mechanical Engineering,2016,52(20):126-136. [11] 石茂林,孙伟,宋学官. 隧道掘进机大数据研究进展:数据挖掘助推隧道挖掘[J]. 机械工程学报,2021,57(22):344-358. SHI Maolin,SUN Wei,SONG Xueguan. Research progress on big data of tunnel boring machine:How data mining can help tunnel boring[J]. Journal of Mechanical Engineering,2021,57(22):344-358. [12] 侯少康,刘耀儒,张凯. 基于IPSO-BP混合模型的TBM掘进参数预测[J]. 岩石力学与工程学报,2020,39(8):1649-1657. HOU Shaokang,LIU Yaoru,ZHANG Kai. Prediction of TBM tunnelling parameters based on IPSO-BP hybrid model[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(8):1649-1657. [13] 景毅,王世称,苑清扬. 马尔科夫过程在地质学中的应用[M]. 北京:地质出版社,1986. JING Yi,WANG Shicheng,YUAN Qingyan. Application of the Markov process in geology[M]. Beijing:Geology Press,1986. [14] SALVINDER S,SHAHRUM A,ABDULLAH N M N,et al. Markov chain modelling of reliability analysis and prediction under mixed mode loading[J]. Chinese Journal of Mechanical Engineering,2015,28(2):307-314. [15] SALIMI A,ROSTAMI J,MOORNANM C. Application of rock mass classification systems for performance estimation of rock TBMs using regression tree and artificial intelligence algorithms[J]. Tunnelling and Underground Space Technology,2019(92):103046. |