• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (15): 89-99.doi: 10.3901/JME.2024.15.089

• 机械动力学 • 上一篇    下一篇

扫码分享

基于峭度曲面极大值的电机轴承保持架故障诊断方法

刘一龙1, 李心远1, 陈银萍2, 成玮1, 陈雪峰1   

  1. 1. 西安交通大学装备运行安全保障与智能监控国家地方联合工程研究中心 西安 710049;
    2. 中国核电工程公司 北京 100840
  • 收稿日期:2023-08-17 修回日期:2023-12-04 出版日期:2024-08-05 发布日期:2024-09-24
  • 作者简介:刘一龙,男,1988年出生,博士,副研究员。主要研究方向为机械动力学、故障诊断和健康管理。E-mail:yilong@xjtu.edu.cn
    陈雪峰(通信作者),男,1975年出生,博士,教授,博士研究生导师。主要研究方向为大型装备健康管理与智能运维。E-mail:chenxf@xjtu.edu.cn
  • 基金资助:
    国家重点研发计划资助项目(2019YFB1705403)。

A Motor Bearing Cage Fault Diagnosis Method Based on Local Maximum of Kurtosis Surface

LIU Yilong1, LI Xinyuan1, CHEN Yinping2, CHENG Wei1, CHEN Xuefeng1   

  1. 1. National and Local Joint Engineering Research Center of Equipment Operation Safety and Intelligent Monitoring, Xi’an Jiaotong University, Xi’an 710049;
    2. China Nuclear Power Engineering Co., Ltd., Beijing 100840
  • Received:2023-08-17 Revised:2023-12-04 Online:2024-08-05 Published:2024-09-24

摘要: 轴承保持架是电机的故障易发部件,在其转动过程中由于受力小、故障部位激发的冲击弱,通常只有在保持架的兜孔转角处的裂纹非常明显或者断裂后才会引起振动超限报警,影响运行安全。针对电机轴承保持架早期故障诊断的难题,首先,提出了一种基于峭度曲面极大值选取最佳频带的新方法,相比传统方法,该方法能够在强噪声及干扰中有效地找到富含保持架微弱冲击信号的故障频带;进而,提出了一种评估故障频带对应的包络谱的故障显著度的计算方法,能够自动辨识出保持架故障;接着开展了两组电机保持架故障实验,验证了方法对保持架故障诊断的有效性;最后,进行长时间数据采集实验,验证了方法的鲁棒性。

关键词: 电机轴承, 保持架故障, 峭度曲面, 早期故障诊断

Abstract: The bearing cage is a fault-prone component of the motor. Due to the small contact force between the cage and other bearing components, the impulsive vibration signal resulted from the cage fault is very weak, and it can be detected by vibration amplitude only when the crack near the bearing pocket corners has significantly expanded or even cracked, which greatly affects operation safety. In order to solve the problem that the early weak fault of the bearing cage is difficult to identify and extract, firstly, a new kind of method for selecting the best frequency bands based on the local maximum value of the kurtosis surface is proposed. Compared with other traditional methods, the proposed method could effectively find the optimum frequency bands which contain most fault characteristics in strong background noise. Moreover, a bearing fault saliency calculation method is proposed to evaluate the envelope spectra of the selected optimal bands, enabling automatic cage fault identification. After that, two sets of cage fault experiments verify the method's diagnostic effectiveness, followed by a long-term acquisition experiment to assess its robustness.

Key words: motor bearing, cage fault, kurtosis surface, early fault diagnosis

中图分类号: