• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (10): 413-424.doi: 10.3901/JME.2024.10.413

• 先进控制技术 • 上一篇    下一篇

扫码分享

冗余转向系统电流传感器故障诊断及容错策略

朱冰, 吕恬, 赵健, 陈志成, 吴坚   

  1. 吉林大学汽车仿真与控制国家重点实验室 长春 130022
  • 收稿日期:2023-06-01 修回日期:2023-12-28 出版日期:2024-05-20 发布日期:2024-07-24
  • 作者简介:朱冰,男,1982年出生,博士,教授,博士研究生导师。主要研究方向为汽车智能集成控制,工程仿生学。
    E-mail:zhubing@jlu.edu.cn
    吕恬,女,1998年出生,硕士研究生。主要研究方向为汽车电控与智能化。
    E-mail:lyu_tian@163.com
    赵健,男,1978年出生,博士,教授,博士研究生导师。主要研究方向为汽车地面系统分析与控制。
    E-mail:zhaojian@jlu.edu.cn
    陈志成(通信作者),男,1994年出生,博士,讲师。主要研究方向为汽车电控与智能化,线控底盘系统设计与控制。
    E-mail:chenzhicheng@jlu.edu.cn
  • 基金资助:
    国家自然科学基金(52302471,52172386)、长沙市“揭榜挂帅”重大科技(kq2207008)和吉林省重大科技专项(20220301009GX)资助项目。

Fault Diagnosis and Fault-tolerance Strategy of Current Sensor for Redundant Steering System

ZHU Bing, Lü Tian, ZHAO Jian, CHEN Zhicheng, WU Jian   

  1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022
  • Received:2023-06-01 Revised:2023-12-28 Online:2024-05-20 Published:2024-07-24

摘要: 对装配有双绕组电机的冗余转向系统,提出一种基于数据和机理混合驱动的电流传感器故障诊断及容错策略。进行冗余转向系统架构分析,分别建立电流传感器故障模型和双绕组永磁同步电机(Dual-winding permanent magnet synchronous motor, DW-PMSM)模型。在此基础上,设计电流传感器故障诊断及容错策略。采用坐标变换估计电机相电流,并以此作为非线性自回归(Nonlinear autoregressive with exogenous inputs,NARX)神经网络的外部输入,改变NARX网络结构实现DW-PMSM相电流的单步和多步预测,由此设计电流传感器的故障检测、定位和分类策略,提取传感器故障严重程度,通过电流传感器补偿或切换手段实现故障容错控制。基于Matlab/Simulink和dSPACE分别搭建了转向系统仿真平台和硬件在环平台,进行算法测试验证。结果表明,提出的算法能够在多种工况下迅速检测电流传感器故障并完成容错控制,提高冗余转向系统工作的可靠性和安全性。

关键词: 车辆工程, 冗余转向系统, 电流传感器, 故障诊断及容错, 数据与机理混合驱动, 硬件在环

Abstract: A fault diagnosis and fault-tolerance strategy of current sensor based on data and mechanism hybrid driven is proposed for redundant steering system with dual-winding motor. The redundant steering system architecture is analyzed, the current sensor fault model and dual-winding permanent magnet synchronous motor(DW-PMSM) model are established. On this basis, the fault diagnosis and fault-tolerance strategy is designed. The coordinate transformation is used to estimate the motor phase current, which is used as the external input of nonlinear autoregressive with eXogenous inputs(NARX) neural network. The single-step and multi-step prediction of DW-PMSM phase current is realized by changing the structure of NARX neural network. Therefore, the fault detection, location and classification strategies of current sensor are designed. The fault severity of the sensor is extracted, and the fault-tolerance control is realized through the compensation of the current sensor or switching. Based on Matlab/Simulink and dSAPCE, a steering system simulation platform and a hardware-in-the-loop test bench are built to test and verify the algorithm. The results show that the proposed algorithm can quickly detect the fault of current sensor and achieve fault-tolerance control under various working conditions, and improve the reliability and safety of redundant steering system.

Key words: vehicle engineering, redundant steering system, current sensor, fault diagnosis and fault-tolerance, data and mechanism hybrid driven, hardware-in-the-loop

中图分类号: