机械工程学报 ›› 2024, Vol. 60 ›› Issue (4): 66-81.doi: 10.3901/JME.2024.04.066
• 特邀专栏:智能液压元件及系统基础技术 • 上一篇 下一篇
石健1,2, 刘冬1,2, 王少萍1,2
收稿日期:
2023-03-04
修回日期:
2023-10-20
出版日期:
2024-02-20
发布日期:
2024-05-25
通讯作者:
刘冬,男,1994年出生,博士研究生。主要研究方向为机电系统健康管理、数字孪生以及不确定性量化。E-mail:ld_buaa@buaa.edu.cn
作者简介:
石健,男,1978年出生,副教授,硕士研究生导师。主要研究方向为机电系统健康管理、可靠性工程、可靠性测试以及数字孪生相关的关键技术。E-mail:shijian123@sina.com;王少萍,女,1966年出生,教授,博士研究生导师。主要研究方向为可靠性工程、网络可靠性、可靠性测试和飞行控制。E-mail:shaopingwang@vip.sina.com
基金资助:
SHI Jian1,2, LIU Dong1,2, WANG Shaoping1,2
Received:
2023-03-04
Revised:
2023-10-20
Online:
2024-02-20
Published:
2024-05-25
摘要: 数字孪生(Digital twin,DT)技术与预测和健康管理(Prognostics and health management,PHM)技术是智能制造领域中的两个热点研究方向。在对PHM技术现状总结分析的基础上,归纳当前制约PHM技术发展和应用的关键性问题如下:设备故障机理研究不透彻、全生命周期数据不完备、健康状态监测方法不足、多层级状态信息综合不足以及不确定性管理问题。并阐述数字孪生技术在解决这些问题过程中的独特优势,提出将基于第一性原理的多维数字孪生模型构建、虚实空间的多维数据映射、孪生体技术状态一致性度量与模型的高效迭代修正以及基于多域特征的系统健康评估、预测与维护决策作为关键技术构建DT-PHM研究架构。随着技术不断推进与发展,两项技术深度融合,基于数字孪生的复杂系统健康管理技术必将成为未来装备全生命周期视情维修和预测性维修的关键技术之一。
中图分类号:
石健, 刘冬, 王少萍. 基于数字孪生的机电液系统PHM关键技术综述[J]. 机械工程学报, 2024, 60(4): 66-81.
SHI Jian, LIU Dong, WANG Shaoping. Digital Twin for Complex Electromechanical-hydraulic System PHM:A Review[J]. Journal of Mechanical Engineering, 2024, 60(4): 66-81.
[1] LEE J,WU F J,ZHAO W Y,et al. Prognostics and health management design for rotary machinery systems:Reviews,methodology and applications[J]. Mechanical Systems and Signal Processing,2014,42(1-2):314-334. [2] AZZAWI D A,MONCAYO H,PERHINSCHI M G,et al. Comparison of immunity-based schemes for aircraft failure detection and identification[J]. Engineering Applications of Artificial Intelligence,2016,52:181-193. [3] HESS A,FILA L. The joint strike fighter (JSF) PHM concept:Potential impact on aging aircraft problems[C]//2002 IEEE Aerospace Conference Proceedings. US:IEEE Aerospace and Electronics Systems Society, 2002:3021-3026. [4] BYER B,HESS A,FILA L. Writing a convincing cost benefit analysis to substantiate autonomic logistics[C]//2001 IEEE Aerospace Conference Proceedings. US:IEEE Aerospace and Electronics Systems Society, 2001:63095-63103. [5] 张宝珍.预测与健康管理技术的发展及应用[J].测控技术,2008,27(2):5-7.ZHANG Baozhen. Evolution and application of PHM technologies[J]. Measurement & Control Technology,2008,27(2):5-7. [6] MCCOLLOM N N,BROWN E R. PHM on the F-35fighter[C]//2011 IEEE International Conference on Prognostics and Health Management. US:IEEE Reliability Society,2011. [7] 邵冬.罗罗的智能发动机愿景分析[J].航空动力,2020,3:27-30.SHAO Dong. Analysis to the intelligent engine vision of Rolls-Royces[J]. Aerospace Power,2020,3:27-30. [8] SCHLEICH B,ANWER N,MATHIEU L,et al. Shaping the digital twin for design and production engineering[J].CIRP Annals-Manufacturing Technology,2017,66(1):141-144. [9] TAO F,CHENG J F,QI Q L,et al. Digital twin-driven product design, manufacturing and service with big data[J]. International Journal of Advanced Manufacturing Technology,2018,94:3563-3576. [10] TAO F,ZHANG H,LIU A,et al. Digital twin in industry:State-of-the-art[J]. IEEE Transactions on Industrial Informatics,2019,15(4):2405-2415. [11] TAO F,SUI F Y,LIU A,et al. Digital twin-driven product design framework[J]. International Journal of Production Research,2019,57(12):3935-3953. [12] LU Y Q,LIU C,WANG K I K,et al. Digital twin-driven smart manufacturing:Connotation,reference model,applications and research issues[J]. Robotics and Computer-Integrated Manufacturing,2020,61:101837. [13] TAO F,ZHANG M,LIU Y S,et al. Digital twin driven prognostics and health management for complex equipment[J]. CIRP Annals,2018,67(1):169-172. [14] LUO W C,HU T L,YE Y X,et al. A hybrid predictive maintenance approach for CNC machine tool driven by digital twin[J]. Robotics and Computer-Integrated Manufacturing,2020,65:101974. [15] LIM K Y H,ZHENG P,CHEN C H A state-of-the-art survey of digital twin:Techniques,engineering product lifecycle management and business innovation perspectives[J]. Journal of Intelligent Manufacturing,2020,31(6):1313-1337. [16] HELTON J C,BURMASTER D E. Guest editorial:Treatment of aleatory and epistemic uncertainty in performance assessments for complex systems[J].Reliability Engineering & System Safety,1996,54(2-3):91-94. [17] OBERKAMPF W L,HELTON J C,JOSLYN C A,et al.Challenge problems:Uncertainty in system response given uncertain parameters[J]. Reliability Engineering & System Safety,2004,85(1-3):11-19. [18] SHAFTO M,CONROY M,DOYLE R,et al. Modeling,simulation, information technology and processing roadmap[M]. Washington:NASA,2010. [19] GLAESSGEN E H,STARGEL D S. The digital twin paradigm for future NASA and U.S. air force vehicles[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference. US:AIAA,2012. [20] TUEGEL E J,INGRAFFEA A R,EASON T G,et al.Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering,2011:1-14. [21] KRAFT E M. The US air force digital thread/digital twin-life cycle integration and use of computational and experimental knowledge[C]//54th AIAA Aerospace Sciences Meeting. US:AIAA,2016. [22] CRESPO L G,KENNY S P,GIESY D P. The NASA langley multidisciplinary uncertainty quantification challenge[C]//16th AIAA Non-Deterministic Approaches Conference. US:AIAA,2014. [23] JANSSEN H. Monte-Carlo based uncertainty analysis:Sampling efficiency and sampling convergence[J].Reliability Engineering & System Safety,2013,109:123-132. [24] LEE J, LAPIRA E, YANG S H, et al. Predictive manufacturing system-trends of next-generation production systems[C]//IFAC Proceedings Volumes (IFAC-PapersOnline). Brazil:IFAC Secretariat,2013,46(7):150-156. [25] BAO J S,GUO D S,LI J,et al. The modelling and operations for the digital twin in the context of manufacturing[J]. Enterprise Information Systems,2019,13(4):534-556. [26] ZHUANG C B,LIU J H,XIONG H. Digital twin-based smart production management and control framework for the complex product assembly shop-floor[J]. International Journal of Advanced Manufacturing Technology,2018,96(1-4):1149-1163. [27] SCHROEDER G N,STEINMETZ C,PEREIRA C E,et al. Digital twin data modeling with automationML and a communication methodology for data exchange[C]//IFAC-PapersOnLine,2016,49(30):12-17. [28] SCHLUSE M, ATORF L, ROSSMANN J.Experimentable digital twins for model-based systems engineering and simulation-based development[C]//2017 Annual IEEE International Systems Conference. Canada:IEEE Systems Council,2017. [29] SÖDERBERG R,WÄRMEFJORD K,CARLSON J S,et al. Toward a digital twin for real-time geometry assurance in individualized production[J]. CIRP AnnalsManufacturing Technology,2017,66(1):137-140. [30] ASIMOV R M,CHERNOSHEY S V,KRUSE I,et al.Digital twin in the analysis of a big data[C]//4th International Conference and Expo Big Data Advanced Analytics,2018. [31] LUO W C,HU T L,ZHU W D,et al. Digital twin modeling method for CNC machine tool[C]//2018 IEEE 15th International Conference on Networking,Sensing and Control. China:IEEE,2018. [32] STARK R,DAMERAU T. Digital twin[M]. Berlin:Springer,2019. [33] TRAUER J,SCHWEIGERT-RECKSIEK S,ENGEL C,et al. What is a digital twin?-Definitions and insights from an industrial case study in technical product development[C]//Proceedings of the Design Society:DESIGN Conference. UK:Cambridge University Press,2020,1:757-766. [34] VANDERHORN E,MAHADEVAN S. Digital twin:Generalization,characterization and implementation[J].Decision Support Systems,2021,145:113524. [35] ZHANG H,LIU Q,CHEN X,et al. A digital twin-based approach for designing and multi-objective optimization of hollow glass production line[J]. IEEE Access,2017,5:26901-26911. [36] GABOR T,BELZNER L,KIERMEIER M,et al. A simulation-based architecture for smart cyber-physical systems[C]//13th IEEE International Conference on Autonomic Computing, Germany:IEEE Computer Society,2016:374-379. [37] TUEGEL E J. The airframe digital twin:Some challenges to realization[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference.US:AIAA International,2012. [38] ZHANG L,ZHOU L F,HORN B K P. Building a right digital twin with model engineering[J]. Journal of Manufacturing Systems,2021,59:151-164. [39] LEE H,KIM T. Smart factory use case model based on digital twin[J]. ICIC Express Letters, Part B:Applications,2018,9(9):931-936. [40] SCHROEDER G,STEINMETZ C,PEREIRA C E,et al.Visualising the digital twin using web services and augmented reality[C]//2016 IEEE 14th International Conference on Industrial Informatics. France:IEEE Industrial Electronics Society,2016:522-527. [41] SESHADRI B R, KRISHNAMURTHY T. Structural health management of damaged aircraft structures using digital twin concept[C]//25th AIAA/AHS Adaptive Structures Conference,US:AIAA,2017. [42] DEBROY T,ZHANG W,TURNER J,et al. Building digital twins of 3D printing machines[J]. Scripta Materialia,2017,135:119-124. [43] MORENO A, VELEZ G, ARDANZA A, et al.Virtualisation process of a sheet metal punching machine within the Industry 4.0 vision[J]. International Journal on Interactive Design and Manufacturing,2017,11(2):365-373. [44] MAGARGLE R,JOHNSON L,MANDLOI P,et al. A simulation-based digital twin for model-driven health monitoring and predictive maintenance of an automotive braking system[C]//Proceedings of 12th Interational Modelica Conference,Czech Republic,2017:35-46. [45] MOGHADAM F K, NEJAD A R. Online condition monitoring of floating wind turbines drivetrain by means of digital twin[J]. Mechanical Systems and Signal Processing,2022,162:108087. [46] JAIN P,POON J,SINGH J P,et al. A digital twin approach for fault diagnosis in distributed photovoltaic systems[J]. IEEE Transactions on Power Electronics,2020,35(1):940-956. [47] 陶飞,张贺,戚庆林,等.数字孪生模型构建理论及应用[J].计算机集成制造系统,2021,27(1):1-15.TAO Fei,ZHANG He,QI Qinglin,et al. Theory of digital twin modeling and its application[J]. Computer Integrated Manufacturing Systems,2021,27(1):1-15. [48] 陶飞,刘蔚然,刘检华,等.数字孪生及其应用探索[J].计算机集成制造系统,2018,24(1):1-18.TAO Fei,LIU Weiran,LIU Jianhua,et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems,2018,24(1):1-18. [49] 刘娟,庄存波,刘检华,等.基于数字孪生的生产车间运行状态在线预测[J].计算机集成制造系统,2021,27(2):467-477.LIU Juan,ZHUANG Cunbo,LIU Jianhua,et al. Online prediction technology of workshop operating status based on digital twin[J]. Computer Integrated Manufacturing Systems,2021,27(2):467-477. [50] MOI T,CIBICIK A,RØVÅG T. Digital twin based condition monitoring of a knuckle boom crane:An experimental study[J]. Engineering Failure Analysis,2020,112:104517. [51] SONG Z L,SHI H T,BAI X T,et al. Digital twin-assisted fault diagnosis system for robot joints with insufficient data[J]. Journal of Field Robotics,2023,40(2):258-271. [52] SHAO X,CAI B,FAN H,et al. A data-driven remaining useful life prediction methodology:Optimization based on digital twin[C]//2021 global reliability and prognostics and health management (PHM). China,2021:1-7. [53] KALGREN P W,BYINGTON C S,ROEMER M J,et al.Defining PHM,a lexical evolution of maintenance and logistics[C]//2006 IEEE Autotestcon. US:IEEE,2006:353-358. [54] LEE J,WU F,ZHAO W,et al. Prognostics and health management design for rotary machinery systems-Reviews, methodology and applications[J].Mechanical Systems and Signal Processing,2014,42(1):314-334. [55] ALI A,ABDELHADI A. Condition-based monitoring and maintenance:State of the art review[J]. Applied Sciences-Basel,2022,12(2):688. [56] LIU H,XIA M,WILLIAMS D,et al. Digital twin-driven machine condition monitoring:A literature review[J].Journal of Sensors,2022,2022:6129995. [57] PENG Y Z,ZHAO S,WANG H. A digital twin based estimation method for health indicators of DC-DC converters[J]. IEEE Transactions on Power Electronics,2021,36(2):2105-2118. [58] NGUYEN T N,PONCIROLI R,BRUCK P,et al. A digital twin approach to system-level fault detection and diagnosis for improved equipment health monitoring[J].Annals of Nuclear Energy,2022,170:109002. [59] MINERVA R,AWAN F M,CRESPI N. Exploiting digital twins as enablers for synthetic sensing[J]. IEEE Internet Computing,2022,26(5):61-67. [60] ZHOU D W. Data processing in precise surveying of control network for ballastless track of high-speed railway[J]. Science of Surveying and Mapping,2013,38(1):118-121. [61] ZHANG W, ZHU D, HUANG Z, et al. Dynamic parameters identification of rolling joints based on the digital twin dynamic model of an assembled ball screw feed system[J]. Advances Mechanical Engineering,2022,14(6):16878132221108491. [62] XIA M,SHAO H,WILLIAMS D,et al. Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning[J]. Reliability Engineering & System Safety,2021,215:107938. [63] GUO K,WAN X,LIU L,et al. Fault diagnosis of intelligent production line based on digital twin and improved random forest[J]. Applied Sciences-Basel,2021,11(16):7733. [64] LIU M,FANG S,DONG H,et al. Review of digital twin about concepts, technologies, and industrial applications[J]. Journal of Manufacturing Systems,2021,58:346-361. [65] HE B,LIU L,ZHANG D. Digital twin-driven remaining useful life prediction for gear performance degradation:A review[J]. Journal of Computing and Information Science in Engineering,2021,21(3):030801. [66] FU Y,CAO H,GAO W,et al. Digital twin driven remaining useful life prediction for aero-engine turbine discs[J]. Journal of Mechanical Engineering, 2021,57(22):106-113. [67] AIVALIOTIS P, GEORGOULIAS K,CHRYSSOLOURIS G. The use of digital twin for predictive maintenance in manufacturing[J]. International Journal of Computer Integrated Manufacturing,2019,32(11):1067-1080. [68] YANG D,CUI Y,XIA Q,et al. A digital twin-driven life prediction method of lithium-ion batteries based on adaptive model evolution[J]. Materials,2022,15(9):3331. [69] MERAGHNI S,TERRISSA L S,YUE M,et al. A data-driven digital-twin prognostics method for proton exchange membrane fuel cell remaining useful life prediction[J]. International Journal Hydrogen Energy,2021,46(2):2555-2564. [70] NETO A A,CARRIJO B S,ROMANZINI J G,et al.Digital twin-driven decision support system for opportunistic preventive maintenance scheduling in manufacturing[J]. Procedia Manufacturing,2021,55:439-446. [71] MOHAMMED A,CHAIMAE A,ASMAE A,et al. A smart decision making system for the optimization of manufacturing systems maintenance using digital twins and ontologies[J]. International Journal of Advanced Computer Science and Applications,2022,13(8):77-89. [72] AIVALIOTIS P, GEORGOULIAS K,CHRYSSOLOURIS G. The use of digital twin for predictive maintenance in manufacturing[J]. International Journal of Computer Integrated Manufacturing,2019,32(11):1067-1080. [73] 翟科栋.基于SimulationX的潜孔钻机行走液压系统仿真及能耗分析[D].青岛:山东大学,2018.ZHAI Kedong. Simulation and energy consumption analysis of down-the-hole drill walking hydraulic system based on simulationX software[D]. Qingdao:Shandong University,2018. [74] 尉响.电动静液作动器双变量控制算法研究[D].北京:北京交通大学,2020.WEI Xiang. Research on dual-variable control algorithm of electro-hydrostatic actuator[D]. Beijing:Beijing Jiaotong University,2020. [75] 殷想.大型液压挖掘机回转系统分析及节能研究[D].徐州:中国矿业大学,2020.YIN Xiang. Analysis and energy saving research on the slewing system of large hydraulic excavator[D]. Xuzhou:China University of Mining and Technology,2020. [76] 李丽永.基于MAPLESIM的高精度线振动台控制与试验技术研究[D].哈尔滨:哈尔滨工业大学,2015.LI Liyong. Research of control and test technology for linear vibration table with high precision based on maplesim[D]. Harbin:Harbin Institute of Technology,2015. [77] YE Y,YANG Q,YANG F,et al. Digital twin for the structural health management of reusable spacecraft:A case study[J]. Engineering Fracture Mechanics,2020,234:107076. [78] LI Q W, JIANG P, LI H. Prognostics and health management of FAST cable-net structure based on digital twin technology[J]. Research in Astronomy and Astrophysics,2020,20(5):67. [79] BOUZID S,VIAROUGE P,CROS J. Real-time digital twin of a wound rotor induction machine based on finite element method[J]. Energies,2020,13(20):5413. [80] ANGJELIU G, CORONELLI D, CARDANI G.Development of the simulation model for Digital Twin applications in historical masonry buildings:The integration between numerical and experimental reality[J].Computers & Structures,2020,238:106282. [81] LI W,RENTEMEISTER M,BADEDA J,et al. Digital twin for battery systems:Cloud battery management system with online state-of-charge and state-of-health estimation[J].Journal of Energy Storage,2020,30:101557. [82] BOOYSE W,WILKE D N,HEYNS S. Deep digital twins for detection,diagnostics and prognostics[J]. Mechanical Systems and Signal Processing,2020,140:106612. [83] YU J,SONG Y,TANG D,et al. A digital twin approach based on nonparametric Bayesian network for complex system health monitoring[J]. Journal of Manufacturing Systems,2021,58:293-304. [84] KORZENIEWSKA E,SEKULSKA-NALEWAJKO J,GOCLAWSKI J,et al. Surface morphology analysis of metallic structures formed on flexible textile composite substrates[J]. Sensors,2020,20(7):2128. [85] WANG Y,XIE F,MA S,et al. Review of surface profile measurement techniques based on optical interferometry[J]. Optics and Lasers in Engineering,2017,93:164-170. [86] HE G,WANG X,LI D,et al. A new real-time surface profile measurement using a sinusoidal phase modulating interferometry[C]//27th International Congress on High-Speed Photography and Photonics. China:SPIE,2007. [87] KÜHN J,SOLANAS E,BOURQUIN S,et al. Fast non-contact surface roughness measurements up to the micrometer range by dual-wavelength digital holographic microscopy[C]//Proceedings of SPIE-The International Society for Optical Engineering. Belgium:SPIE,2010,7718:771805. [88] JO T,KIM K R,KIM S R,et al. Thickness and surface measurement of transparent thin-film layers using white light scanning interferometry combined with reflectometry[J]. Journal of the Optical Society of Korea,2014,18(3):236-243. [89] KUMAR A,GANDHI C P,VASHISHTHA G,et al. VMD based trigonometric entropy measure:A simple and effective tool for dynamic degradation monitoring of rolling element bearing[J]. Measurement Science and Technology,2021,33(1):014005. [90] NIENHAUS K, BOOS F D, GARATE K, et al.Development of acoustic emission (AE) based defect parameters for slow rotating roller bearings[C]//Journal of Physics:Conference Series. UK:Institute of Physics Publishing,2012,364(1):012034. [91] TANG L,LIU X,WU X,et al. Defect localization on rolling element bearing stationary outer race with acoustic emission technology[J]. Applied Acoustics,2021,182:108207. [92] FUENTES R,DWYER-JOYCE R S,MARSHALL M B,et al. Detection of sub-surface damage in wind turbine bearings using acoustic emissions and probabilistic modelling[J]. Renewable Energy,2020,147:776-797. [93] CHEFROUR A. Incremental supervised learning:Algorithms and applications in pattern recognition[J].Evolutionary Intelligence,2019,12:97-112. [94] CUBILLO A, PERINPANAYAGAM S,ESPERON-MIGUEZ M. A review of physics-based models in prognostics:Application to gears and bearings of rotating machinery[J]. Advances in Mechanical Engineering,2016,8(8):1687814016664660. [95] ORSAGH R F, SHELDON J, KLENKE C J.Prognostics/diagnostics for gas turbine engine bearings[C]//2003 IEEE Aerospace Conference Proceedings. US:IEEE Computer Society,2003,7:3095-3103. [96] LI B, CHOW M Y, TIPSUWAN Y, et al.Neural-network-based motor rolling bearing fault diagnosis[J]. IEEE Transactions on Industrial Electronics,2000,47(5):1060-1069. [97] JENNIONS I. Integrated vehicle health management:Perspectives on an emerging field[M]. Warrendale:SAE International,2011. [98] JANSSENS O,SLAVKOVIKJ V,VERVISCH B,et al.Convolutional neural network based fault detection for rotating machinery[J]. Journal of Sound and Vibration,2016,377:331-345. [99] JING L,ZHAO M,LI P,et al. A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox[J].Measurement,2017,111:1-10. [100] MIHAI S,YAQOOB M,HUNG D V,et al. Digital twins:A survey on enabling technologies,challenges,trends and future prospects[J]. IEEE Communications Surveys & Tutorials,2022,24(4):2255-2291. [101] WANG S,LAI X,HE X,et al. Building a trustworthy product-level shape-performance integrated digital twin with multifidelity surrogate model[J]. Journal of Mechanical Design,2022,144(3):031703. [102] HU F,YANG Y,LIU S,et al. Digital twin high-fidelity modeling method for spinning forming of aerospace thin-walled parts[J]. Computer Integrated Manufacturing Systems,2020,40:1-17. [103] ZHANG Z,GUAN Z,GONG Y,et al. Improved multi-fidelity simulation-based optimisation:Application in a digital twin shop floor[J]. International Journal of Production Research,2022,60(3):1016-1035. |
[1] | 张超, 周光辉, 李晶晶, 魏智博, 秦天宇. 面向航空复杂零件智能工艺规划的孪生工艺模型构建与应用研究[J]. 机械工程学报, 2024, 60(6): 32-43. |
[2] | 王跃飞, 王超, 许于涛, 孙睿, 肖锴, 王凯林. 边-云协同下智能制造单元作业的数字孪生任务调度方法[J]. 机械工程学报, 2024, 60(6): 137-152. |
[3] | 姜文涛, 刘晓明, 李培源, 陈海, 张煦松. 机械式真空快速切换开关机构多目标优化设计[J]. 机械工程学报, 2024, 60(6): 153-162. |
[4] | 刘达新, 王科, 刘振宇, 许嘉通, 谭建荣. 基于数据融合与知识推理的机器人装配单元数字孪生建模方法研究[J]. 机械工程学报, 2024, 60(5): 36-50. |
[5] | 杨亮亮, 来孝楠, 何西旺, 李鹏, 郭正刚, 宋学官. 面向飞机机翼数字孪生的在线加速度积分方法[J]. 机械工程学报, 2024, 60(2): 342-355. |
[6] | 陈健, 孟义兴, 袁慎芳, 徐秋慧, 王卉. 融合导波监测的搭接结构裂纹扩展寿命孪生预测[J]. 机械工程学报, 2024, 60(16): 34-42. |
[7] | 王诗彬, 王世傲, 陈雪峰, 黄海, 安波涛, 赵志斌, 刘永泉, 李应红. 可解释性智能监测诊断网络构造及航空发动机整机试车与中介轴承诊断应用[J]. 机械工程学报, 2024, 60(12): 90-106. |
[8] | 刘岳开, 王天杨, 褚福磊. 基于低延迟可解释性深度学习的复杂旋转机械关键部件知识嵌入与诊断方法研究[J]. 机械工程学报, 2024, 60(12): 107-115. |
[9] | 沈功田, 金灿华, 张君娇, 胡斌, 刘渊, 王强. 无损云检测技术研究及仪器系统开发[J]. 机械工程学报, 2023, 59(4): 1-9. |
[10] | 叶文昌, 郭必成, 邓朝晖, 王伟, 邹伶俐, 刘超, 尹刚刚, 姜峰. 刀具智能化关键技术的研究进展及发展趋势[J]. 机械工程学报, 2023, 59(23): 265-282. |
[11] | 侯正航, 何卫平, 王淑侠, 胡余彭, 肖一帆. 基于数字孪生的弧齿型导引头伺服机构动态装调技术研究[J]. 机械工程学报, 2023, 59(22): 433-443. |
[12] | 李宏坤, 魏代同, 陈玉刚, 许书本. 数字孪生驱动的旋转叶盘振动状态全景感知方法[J]. 机械工程学报, 2023, 59(21): 270-282. |
[13] | 谭建荣, 高铭宇, 徐敬华, 王林轩, 贾晨, 张树有, 王康. 数智化正向设计方法及其在制造装备与过程中的应用[J]. 机械工程学报, 2023, 59(19): 111-125. |
[14] | 周祖德, 姚碧涛. 数字制造的科学体系与技术架构[J]. 机械工程学报, 2023, 59(19): 126-151. |
[15] | 丁明娜, 刘献礼, 岳彩旭, 范梦超, 顾浩. 面向智能制造过程的刀具设计、制备与管控技术[J]. 机械工程学报, 2023, 59(19): 429-459. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||