• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (2): 243-251.doi: 10.3901/JME.2024.02.243

• 运载工程 • 上一篇    下一篇

扫码分享

基于转向模式切换的三轴独立转向车辆路径跟踪控制研究

张昊1, 魏超1, 胡纪滨1, 陈泳丹2   

  1. 1. 北京理工大学机械与车辆学院 北京 100081;
    2. 中国北方车辆研究所 北京 100072
  • 收稿日期:2023-01-02 修回日期:2023-07-11 出版日期:2024-01-20 发布日期:2024-04-09
  • 通讯作者: 魏超(通信作者),男,1980年出生,博士,副教授,博士研究生导师。主要研究方向为无人驾驶车辆总体设计、电动汽车总体设计与智能控制技术、车辆先进传动技术。E-mail:bit_weichao@163.com
  • 作者简介:张昊,男,1997年出生,博士研究生。主要研究方向为车辆动力学及控制理论。E-mail:625100468@qq.com
  • 基金资助:
    国家自然科学基金资助项目(U1764257)。

Research on Three-axis Independent Steering Vehicle Path Tracking Control Based on Steering Mode Switching

ZHANG Hao1, WEI Chao1, HU Jibin1, CHEN Yongdan2   

  1. 1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081;
    2. China North Vehicle Research Institute, Beijing 100072
  • Received:2023-01-02 Revised:2023-07-11 Online:2024-01-20 Published:2024-04-09

摘要: 三轴独立转向车辆广泛应用于特种领域,并逐渐向无人化、智能化发展,路径跟踪控制方法是其中的重要研究内容。三轴独立转向车辆相较于传统车辆具有更加复杂的转向行为,因此在路径跟踪控制过程中需要充分的考虑其转向特性带来的影响。针对三轴独立转向无人车辆在路径跟踪过程中的转向控制问题,基于理论力学和轮胎魔术公式建立多自由度模型,对比不同转向模式下横向位移和横摆角变化差异。然后,以实车响应数据作为参考,采用非支配排序遗传算法II(Non-dominated sorting genetic algorithm II,NSGA-II)优化多自由度模型参数,并通过模型仿真获取数据集。通过BP神经网络(Back-propagation network)制定转向模式切换策略,最终将模式切换策略引入模型预测控制器,仿真试验和实车试验结果表明,三轴独立转向车辆在路径跟踪过程中通过转向模式切换可以有效提高跟踪精度。

关键词: 三轴车辆, 独立转向, 模式切换, 神经网络, 路径跟踪

Abstract: Three axle independent steering vehicles are widely used in special fields and are gradually developing towards unmanned and intelligent, with path tracking control methods being an important research content. Three axle independent steering vehicles have more complex steering behaviour compared to traditional vehicles, so it is necessary to fully consider the impact of their steering characteristics in the path tracking control process. This study focuses on the steering control problem of a three axis independent steering unmanned vehicle during path tracking. A multi degree of freedom model is established based on theoretical mechanics and tire magic formulas, and the differences in lateral displacement and yaw angle changes under different steering modes are compared. Then, using the actual vehicle response data as a reference, the non dominated sorting genetic algorithm II(NSGA-II) was used to optimize the multi degree of freedom model parameters, and the dataset was obtained through model simulation. The steering mode switching strategy is developed through the BP neural network, and finally the mode switching strategy is introduced into the model predictive controller. Simulation and actual vehicle test results show that the tracking accuracy of three-axis independent steering vehicles can be effectively improved through steering mode switching during the path tracking process.

Key words: three-axis vehicle, independent steering, mode switch, neural network, path tracking

中图分类号: