[1] 王小强,李全安,张兴渊. 耐热镁合金的研究现状和发展方向[J]. 热加工工艺, 2007, 36(14):66-70. WANG Xiaoqiang, LI Quanan, ZHANG Xingyuan. Research status and development direction of heat-resistant magnesium alloys[J]. Hot Working Technology, 2007, 36(14):66-70. [2] SHI B L, LUO T J, WANG J, et al. Hot compression behavior and deformation microstructure of Mg-6Zn-1Al-0.3Mn magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(9):2560-2567. [3] 李落星,周佳,张辉. 车身用铝、镁合金先进挤压成形技术及应用[J]. 机械工程学报, 2012, 48(18):35-43. LI Luoxing, ZHOU Jia, ZHANG Hui. Advanced extrusion technology and application of aluminium, magnesium alloy for vehicle body[J]. Journal of Mechanical Engineering, 2012, 48(18):35-43. [4] SITDIKOV O, AVTOKRATOVA E, LATYPOVA O, et al. Structure, strength and superplasticity of ultrafine grained 1570℃ aluminum alloy subjected to different thermomechanical processing routes based on severe plastic deformation[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(4):887-900. [5] 杨世豪,边芳. 医用镁丝多道次大塑性拉拔变形工艺及微观组织研究[J]. 硬质合金, 2021, 38(1):50-57. YANG Shihao, BIAN Fang. Study on multi-pass large plastic drawing deformation and microstructure of medical magnesium wire[J]. Cemented Carbide, 2021, 38(1):50-57. [6] 刚建伟,陈晓霞,唐伟能,等. 高塑性Mg-Gd-Zn镁合金管材的组织和力学性能研究[J]. 材料科学与工艺, 2013, 21(3):87-94. GANG Jianwei, CHEN Xiaoxia, TANG Weineng, et al. Study on microstructure and mechanical properties of high plastic Mg-Gd-Zn magnesium alloy pipe[J]. Materials Science and Technology, 2013, 21(3):87-94. [7] LIU Junwei, CHEN Zhenhua, CHEN Ding, et al. Deformation mechanism and softening effect of extruded AZ31 magnesium alloy sheet at moderate temperatures[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(6):1329-1335. [8] 王颂博,李全安. Mg-11Gd-3Y-1.1Zn-0.5Zr的高温热压缩行为及热加工图[J]. 材料导报, 2020, 34(18):18104-18108. WANG Songbo, LI Quanan. High temperature hot compression behavior and hot working diagram of Mg-11Gd-3Y-1.1Zn-0.5Zr magnesium alloy[J]. Materials Reports, 2020, 34(18):18104-18108. [9] 毛建军,潘复生,陈先华,等. ZK60镁合金的热压缩变形行为[J]. 材料导报, 2010, 24(4):58-62. MAO Jianjun, PAN Fusheng, CHEN Xianhua, et al. Hot compression deformation behavior of ZK60 magnesium alloy[J]. Materials Reports, 2010, 24(4):58-62. [10] SARKAR A, CHACKO D, MANWATKAR S K, et al. Dynamic recrystallization in magnesium alloy AZ31 under large plain strain warm deformation conditions[J]. Metallography, Microstructure, and Analysis:Application and Innovation for Metals, Alloys, and Engineered Materials, 2020, 9(4):588-595. [11] HUANG Weiying, YANG Xuyue, YANG Yi, et al. Effect of yttrium addition on the hot deformation behaviors and microstructure development of magnesium alloy[J]. Journal of Alloys and Compounds, 2019, 25(786):118-125. [12] POPOVA E, STARASELSKI Y, BRAHME A, et al. Coupled crystal plasticity-probabilistic cellular automata approach to model dynamic recrystallization in magnesium alloys[J]. International Journal of Plasticity, 2015, 66(4):85-102. [13] 陈庆荣,杨忠,李建平,等. 变形镁合金EBSD试样的制备[J]. 材料导报, 2013, 27(3):107-113, 118. CHEN Qingrong, YANG Zhong, LI Jianping, et al. Preparation of EBSD sample of wrought magnesium alloy[J]. Materials Reports, 2013, 27(3):107-113, 118. [14] NARAYANA M S V S, ADITYA S, RAMESH N P, et al. Development of processing maps and constitutive relationship for thermomechanical processing of aluminum alloy AA2219[J]. Journal of Materials Engineering and Performance, 2017, 26(5):2190-2203. [15] BARNETT M R. Recrystallization during and following hot working of magnesium alloy AZ31[J]. Materials Science Forum, 2003, 41(9):503-508. [16] RREES F H. The science technology and applications of magnesium[J]. JOM, 1998, 50(9):30-34. [17] 苏辉,楚志兵,薛春,等. AZ31镁合金热压缩过程动态再结晶行为研究[J]. 稀有金属材料与工程, 2021, 50(6):2033-2039. SU Hui, CHU Zhibing, XUE Chun, et al. Dynamic recrystallization behavior of AZ31 magnesium alloy during hot compression[J]. Rare Metal Materials and Engineering, 2021, 50(6):2033-2039. [18] SELLARS C M. Modelling microstructural development during hot rolling[J]. Materials Science and Technology, 1990, 6(11):1072-1081. [19] ZENER C, HOLLOMON J H. Effect of strain-rate upon the plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1):22-28. [20] PRASAD Y V R K, RAO K P. Influence of oxygen on the processing maps for hot working of electrolytic tough pitch copper[J]. Materials Letters, 2006, 60(21-22):2786-2790. [21] SIVAKESAVAM O, PRASAD Y V R K. Hot deformation behavior of as-cast Mg-2Zn-1Mn alloy in compression:A study with processing map[J]. Materials Science and Engineering A, 2003, 362(1-2):118-124. [22] 王蕊宁. Ti53311S、TP650和 Zr-4合金热加工性的研究[D]. 西安:西北工业大学, 2008. WANG Ruining. Study on hot workability of Ti53311S、TP650 and Zr-4 alloys[D]. Xi'an:Northwest University of Technology, 2008. [23] PRASAD Y, SASIDHARA S. Hot working guide:A compendium of processing maps[M]. Materials Park:ASM International, 1997. [24] RAVICHANDRAN N, PRASAD Y V R K. Dynamic recrystallization during hot deformation of aluminum:A study using processing maps[J]. Metallurgical and Materials Transactions A, 1991, 22:2339-2348. [25] SIVAKESAVAM O, PRASAD Y. Characteristics of superplasticity domain in the processing map for hot working of as-cast Mg-11.5Li-1.5Al alloy[J]. Materials Science and Engineering A, 2002, 323:270-277. [26] RIDLEY N. Superplastic microstructures[J]. Materials Science and Technology, 1990, 6:1145-1156. [27] BALASUBRAHMANYAM V, PRASAD Y V R K. Hot deformation mechanisms in Ti-5.5Al-1Fe alloy[J]. Journal of Materials Engineering and Performance, 2001, 10:731-739. [28] BRODUSCH N, DEMERS H, GAUVIN R. Dark-field imaging based on post-processed electron backscatter diffraction patterns of bulk crystalline materials in a scanning electron microscope[J]. Ultramicroscopy, 2015, 148(9):123-131. |