• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (22): 254-264.doi: 10.3901/JME.2023.22.254

• 材料科学与工程 • 上一篇    下一篇

扫码分享

冲击连接工艺参数对铝钢接头界面的影响

孟正华1,2,3, 周睿4, 龚梦圆4, 刘维4, 郭巍1,3,5   

  1. 1. 现代汽车零部件技术湖北省重点实验室 武汉 430070;
    2. 湖南大学汽车车身先进设计制造国家重点实验室 长沙 410082;
    3. 武汉理工大学汽车工程学院 武汉 430070;
    4. 武汉理工大学材料科学与工程学院 武汉 430070;
    5. 汽车零部件技术湖北省协同创新中心 武汉 430070
  • 收稿日期:2022-11-27 修回日期:2023-02-11 出版日期:2023-11-20 发布日期:2024-02-19
  • 通讯作者: 郭巍(通信作者),男,1982年出生,博士,副教授,博士研究生导师。主要研究方向为汽车轻量化。E-mail:whutgw@whut.edu.cn
  • 作者简介:孟正华,男,1980年出生,博士,副教授。主要研究方向为先进材料加工工艺。E-mail:meng@whut.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFB2503501)、国家自然科学基金(52005374)、湖南大学汽车车身先进设计制造国家重点实验室开放基金(31815008)和湖北省重点研发计划(2021BAA174)资助项目。

Effects of Impact Welding Parameters on the Aluminum/Steel Joint Interface

MENG Zhenghua1,2,3, ZHOU Rui4, GONG Mengyuan4, LIU Wei4, GUO Wei1,3,5   

  1. 1. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan 430070;
    2. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082;
    3. School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070;
    4. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070;
    5. Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan 430070
  • Received:2022-11-27 Revised:2023-02-11 Online:2023-11-20 Published:2024-02-19

摘要: 以Al3003铝和HC180钢的高速冲击连接工艺为研究对象,建立二维有限元算法(Finite element method,FEM)和光滑粒子算法(Smoothed particle hydrodynamics,SPH)耦合分析模型,研究冲击连接工艺参数对铝钢接头界面特征形成的影响规律。结果表明,随着冲击速度的增加,波形界面的波幅尺寸会随之增加;而随着冲击角度的增加,波形界面波幅则会先增加后趋于平稳甚至降低。同时通过对HC180钢/Al3003铝合金板材的箔片气化冲击焊接试验研究验证了模拟分析结果,并分析放电能量对连接界面形貌的影响规律。随着放电能量的增加,铝钢连接界面波幅增加;当放电能量达到8.4 kJ时,界面出现漩涡结构和嵌入两侧基材的颗粒。连接界面附近会发生明显的晶粒细化现象,且随着冲击角度增加,界面附近细晶区域的面积逐渐增加。界面温度场模拟结果表明漩涡内部产生较大温升,电子探针(Electron probe micro-analysis,EPMA)分析结果表明漩涡内部产生了铝铁金属间化合物。金属间化物主要以颗粒的形式嵌入母材基体中或分布在界面漩涡结构内部,且随着初始冲击角度的增加,元素扩散加剧,嵌入颗粒尺寸与嵌入深度均有增加。

关键词: 冲击连接, 波形界面, 异种金属, 光滑粒子动力学, 异种材料

Abstract: The high-rate impact welding process of Al3003 aluminum and HC180 steel dissimilar metals is taken as the research object, and a coupling model of two-dimensional finite element(FEM) algorithm and smooth particle dynamics(SPH) algorithm is established to investigate the interface waveform formation. The results show that, the waveform amplitude of Al-steel impact joint interface increases with the increase of impact velocity. With the enlargement of impact angle, the amplitude of interface waveform increases first and then stabilizes or even decreases. The simulation results are verified by foil vaporization impact welding experiments, and the influence of discharge energy on the morphology of the Al-steel joint interface is analyzed. The interface waveform amplitude increases with the enhances of welding discharge energy. When the energy reaches 8.4 kJ, vortex structure and embedded particles appears at the interface. Obvious grain refinement will occur near the interface, and with the increase of impact angle, the area of fine grain region near the interface will gradually increase. The simulation analysis of the interface temperature field showed that, temperature rise in the vortex structure, and electron probe analysis(EPMA) results show that, the Al-steel intermetallic compounds generated in these zones. Intermetallic are mainly embedded in the base metal matrix in the form of particles or distributed in the interface vortex structure. With the increase of the initial impact angle, the element diffusion intensifies, and the embedded particle size and embedded depth increase.

Key words: impact welding, waveform interface, dissimilar metals, smooth particle dynamics, dissimilar materials

中图分类号: