[1] 杜飞,王新云,邓磊,等. 高速冲击连接技术的研究进展[J]. 中国机械工程, 2021, 32(5):600-610. DU Fei, WANG Xinyun, DENG Lei, et al. Research progresses of HVIW technology[J]. China Mechanical Engineering, 2021, 32(5):600-610. [2] 郑远谋. 爆炸焊接和爆炸复合材料[M]. 北京:国防工业出版社, 2017. ZHENG Yuanmou. Explosive welding and explosive composite materials[M]. Beijing:National Defense Industry Press, 2017. [3] YU H, DANG H, QIU Y. Interfacial microstructure of stainless steel/aluminum alloy tube lap joints fabricated via magnetic pulse welding[J]. Journal of Materials Processing Technology, 2017, 250:297-303. [4] WANG H, LIU D, JOHN L, et al. Laser impact welding for joining similar and dissimilar metal combinations with various target configurations[J]. Journal of Materials Processing Technology, 2020, 278:116498. [5] VIVEK A, HANSEN S, LIU B, et al. Vaporizing foil actuator:A tool for collision welding[J]. Journal of Materials Processing Technology, 2013, 213:2304-2311. [6] ZHANG Y, SUDARSANAM B, CURTIS P, et al. Application of high velocity impact welding at varied different length scales[J]. Journal of Materials Processing Technology, 2011, 211:944-952. [7] LEE T, ZHANG S, VIVEK A, et al. Flyer thickness effect in the impact welding of aluminum to steel[J]. Journal of Manufacturing Science and Engineering, 2018, 140(12):121002. [8] LORENZ A, LUEG-ALTHOFF J, BELLMANN J, et al. Workpiece positioning during magnetic pulse welding of aluminum steel joints[J]. Welding Journal, 2016, 95(3):101-109. [9] AKBARI MOUSAVI A, AL-HASSANI S. Numerical and experimental studies of the mechanism of the wavy interface formations in explosive/impact welding[J]. Journal of the Mechanics and Physics of Solids, 2005, 53:2501-2528. [10] GRIGNON F, BENSON D, VECCHIO K, et al. Explosive welding of aluminum to aluminum:Analysis, computations and experiments[J]. International Journal of Impact Engineering, 2004, 30:1333-1351. [11] LI J, RAOELISON R, SAPANATHAN T, et al. Interface evolution during magnetic pulse welding under extremely high strain rate collision:Mechanisms, thermomechanical kinetics and consequences[J]. Acta Materialia, 2020, 195:404-415. [12] RAOELISON R, SAPANATHAN T, PADAYODI E, et al. Interfacial kinematics and governing mechanisms under the influence of high strain rate impact conditions:Numerical computations of experimental observations[J]. Journal of the Mechanics and Physics of Solids, 2016, 96:147-161. [13] XU W, SUN X. Numerical investigation of electromagnetic pulse welded interfaces between dissimilar metals[J]. Science and Technology of Welding and Joining, 2016, 21:592-599. [14] GUPTA V, LEE T, VIVEK A, et al. A robust process-structure model for predicting the joint interface structure in impact welding[J]. Journal of Materials Processing Technology, 2019, 264:107-118. [15] ZHANG Z, FENG D, LIU M. Investigation of explosive welding through whole process modeling using a density adaptive SPH method[J]. Journal of Manufacturing Processes, 2018, 35:169-189. [16] GENG H, MAO J, ZHANG X, et al. Formation mechanism of transition zone and amorphous structure in magnetic pulse welded Al-Fe joint[J]. Materials Letters, 2019, 245:151-154. [17] NASSIRI A, KINSEY B. Numerical studies on high-velocity impact welding:Smoothed particle hydrodynamics (SPH) and arbitrary Lagrangian-Eulerian (ALE)[J]. Journal of Manufacturing Processes, 2016, 24:376-381. [18] MENG Z, GONG M, GUO W, et al. Numerical simulation of the joining interface of dissimilar metals in vaporizing foil actuator welding:Forming mechanism and factors[J]. Journal of Manufacturing Processes, 2020, 60:654-665. [19] 陈凯,马勇,何尧,等. C276/304L爆炸焊接复合板界面熔化区微观组织及形成过程[J]. 精密成形工程, 2020, 12(2):67-71. CHEN Kai, MA Yong, HE Yao, et al. Microstructure and formation of melting zone in the interface of C276/304L explosive welding composite plate[J]. Journal of Netshape Forming Engineering, 2020, 12(2):67-71. [20] WANG X, SHAO M, GAO S, et al. Numerical simulation of laser impact spot welding[J]. Journal of Manufacturing Processes, 2018, 35:396-406. [21] ZHANG Z, LIU M. Numerical studies on explosive welding with ANFO by using a density adaptive SPH method[J]. Journal of Manufacturing Processes, 2019, 41:208-220. [22] LI J S, RAOELISON R N, SAPANATHAN T, et al. Interface evolution during magnetic pulse welding under extremely high strain rate collision:Mechanisms, thermomechanical kinetics and consequences[J]. Acta Materialia, 2020, 195:404-415. [23] CHEN S, HUO X, GUO C, et al. Interfacial characteristics of Ti/Al joint by vaporizing foil actuator welding[J]. Journal of Materials Processing Technology, 2019, 263:73-81. [24] ZHANG Z, QIANG H, GAO W. Coupling of smoothed particle hydrodynamics and finite element method for impact dynamics simulation[J]. Engineering Structures, 2011, 33:255-264. [25] MENG Z, ZHOU R, GONG M, et al. Interface formation and interlayer factors of three-dissimilar-metal layers joint in impact welding[J]. Journal of Manufacturing Processes, 2021, 70:414-426. [26] SU S, CHEN S, YU M, et al. Joining aluminium alloy 5a06 to stainless steel 321 by vaporizing foil actuators welding with an interlayer[J]. Metals, 2019, 9:43. [27] CHEN S, HUO X, GUO C, et al. Interfacial characteristics of Ti/Al joint by vaporizing foil actuator welding[J]. Journal of Materials Processing Technology, 2019, 263:73-81. [28] CARVALHO G, GALVÃO I, MENDES R, et al. Microstructure and mechanical behaviour of aluminium-carbon steel and aluminium-stainless steel clads produced with an aluminium interlayer[J]. Materials Characterization, 2019, 155:109819. |