[1] WANG Q, ZHANG S, LIN T, et al, Highly mechanical and high-temperature properties of Cu-Cu joints using citrate-coated nanosized Ag paste in air[J]. Progress in Natural Science, 2021, 31(1):129. [2] MITTAL J, LIN K. Carbon nanotube-based interconnections[J]. Journal of Materials Science, 2017, 52(2):643-662. [3] LEE L, KANG L, KWON Y, et al, FOWLP technology as wafer level system in packaging (SiP) solution[C]//International Conference on Electronics Packaging, 19-22 April 2017, Yamagata, 2017 International Conference on Electronics Packaging, 08 June 2017, Yamagata. [4] ZHANG S, XU X, LIN T, et al. Recent advances in nano-materials for packaging of electronic devices[J]. Journal of Materials Science:Materials in Electronics, 2019, 30(15):13855-13868. [5] YANG M, KO Y, BANG J, et al. Growth inhibition of interfacial intermetallic compounds by pre-coating oriented Cu6Sn5grains on Cu substrates[J]. Journal of Alloys and Compounds, 2017, 701:533-541. [6] JIN T, PAN Y, JEON G J, et al. Ultrathin nanofibrous membranes containing insulating microbeads for highly sensitive flexible pressure sensors[J]. ACS Applied Materials & Interfaces, 2020, 12(11):13348-13359. [7] TOM M. Machine learning[M]. Maidenhead, UK:Tracepro, 1997. [8] WANG F, ZHANG J, ZHENG, et al. Where does AlphaGo go:From church-turing thesis to AlphaGo thesis and beyond[J]. Acta Automatica Sinica, 2016, 3(2):113-120. [9] HUANG C, HUANG H. Process optimization of SnCuNi soldering material using artificial parametric design[J]. Journal of Intelligent Manufacturing, 2014, 25(4):813-823. [10] GUO H, ZHOU D, PANG L, et al. Microwave dielectric properties of low firing temperature stable scheelite structured (Ca,Bi)(Mo,V)O-4 solid solution ceramics for LTCC applications[J]. Journal of the European Ceramic Society, 2019, 39(7):2365-2373. [11] LIU Y, LIU T, HUANG T, et al. Exploring dielectric constant and dissipation factor of LTCC using machine learning[J]. Materials, 2021, 14(19):5784. [12] JIN K, LUO H, WANG Z, et al. Composition optimization of a high-performance epoxy resin based on molecular dynamics and machine learning[J]. Materials & Design, 2020, 194:108932. [13] DOBLIES A, BOLL B, FIEDLER B, et al. Prediction of thermal exposure and mechanical behavior of epoxy resin using artificial neural networks and Fourier transform infrared spectroscopy[J]. Polymers, 2019, 11(2):363. [14] ZHANG S, ZHU B, ZHOU X, et al. Wettability and interfacial morphology of Sn-3.0Ag-0.5Cu solder on electroless nickel plated ZnS transparent ceramic[J]. Journal of Materials Science:Materials in Electronics, 2019, 30(19):17972-17985. [15] WANG J, CHEN J, ZHANG Z, et al. Effects of doping trace Ni element on interfacial behavior of Sn/Ni (polycrystal/single-crystal) joints[J]. Soldering & Surface Mount Technology, 2022, 34(2):124-133. [16] ZHANG S, YANG M, WU Y, et al. A study on the optimization of anisotropic conductive films for Sn-3Ag-0.5Cu-based flex-on-board application at a 250℃ bonding temperature[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8(3):383-391. [17] ZHANG S, LIN T, HE P, et al. A study on the bonding conditions and nonconductive filler contents on cationic epoxy-based Sn-58Bi solder ACFs joints for reliable flex-on-board applications[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(12):2087-2094. [18] JONATHAN S, LIMING C, SILVANA B, et al. Predicting the stability of ternary intermetallics with density functional theory and machine learning[J]. Journal of Chemical Physics, 2018(148):241728. [19] LIU Y, PU L, YANG Y, et al. A high-entropy alloy as very low melting point solder for advanced electronic packaging[J]. Materials Today Advances, 2020(7):100101. [20] ZHANG L, SHI J, LI H, et al. Interfacial microstructure and mechanical properties of ZrB2-SiC-C ceramic and GH99 superalloy joints brazed with a Ti-modified FeCoNiCrCu high-entropy alloy[J]. Materials & Design, 2016(97):230-238. [21] BRIDGES D, ZHANG S, LANG S, et al, Laser brazing of a nickel-based superalloy using a Ni-Mn-Fe-Co-Cu high entropy alloy filler metal[J]. Materials Letters, 2018(215):11-14. [22] SHEN Y, LIN C, LI J, et al. Effect of FeCoNiCrCu0.5 high-entropy-alloy substrate on Sn grain size in Sn-3.0Ag-0.5Cu solder[J]. Scientific Reports, 2019(9):3658. [23] SHEN Y, HSIEH, CHEN S, et al. Investigation of FeCoNiCu properties:Thermal stability, corrosion behavior, wettability with Sn-3.0Ag-0.5Cu and interlayer formation of multi-element intermetallic compound[J]. Applied Surface Science, 2021(546):148931. [24] ZHANG L, CHEN H, TAO X, et al. Machine learning reveals the importance of the formation enthalpy and atom-size difference in forming phases of high entropy alloys[J]. Materials & Design, 2020(193):108835. [25] HUANG W, MARTIN P, ZHUANG H L. Machine learning phase prediction of high-entropy alloys[J]. Acta Materialia, 2019, 169:225-236. [26] KRISHNA Y, JAISWAL U, RAHUL M. Machine learning approach to predict new multiphase high entropy alloys[J]. Scripta Materialia, 2021(197):113804. [27] LIN Y, DENG W, SHIE J, et al. Optimization of reflow soldering process for BGA packages by artificial neural network[J]. Microelectronics International, 2007, 21(2):64-70. [28] TSAI T, TSAI C. Development of a closed-loop diagnosis system for reflow soldering using neural networks and support vector regression[J]. The International Journal of Industrial Engineering:Theory, Applications and Practice, 2014, 21(1):19-33. [29] HUANG C. Innovative parametric design for environmentally conscious adhesive dispensing process[J]. Journal of Intelligent Manufacturing, 2013, 26(1):1-12. [30] YUN T, SIM K, KIM H, Support vector machine-based inspection of solder joints using circular illumination[J]. Electronics Letters, 2000, 36(11):949-951. [31] MA L, XIE W, ZHANG Y, et al. Extreme learning machine based defect detection for solder joints[J]. Journal of Internet Technology, 2020, 21(5):1535-1543. [32] GOTO K, KATO K, SAITO T, et al. Adversarial autoencoder for detecting anomalies in soldered joints on printed circuit boards[J]. Journal of Electronic Imaging, 2020, 29(4):041013-041022. [33] TSAN T, SHIH T, FUH C. TsanKit:Artificial intelligence for solder ball head-in-pillow defect inspection[J]. Machine Vision and Applications, 2021, 32(3):66-83. [34] SU L, WANG L, LI K, et al. Automated X-ray recognition of solder bump defects based on ensemble-ELM[J]. Science China Technological Sciences, 2019, 62(9):1512-1519. [35] WEI W, WEI L, NIE L, et al. Using active thermography and modified SVM for intelligent diagnosis of solder bumps[J]. Infrared Physics & Technology, 2015(72):163-169. [36] FAN M, WEI L, HE Z, et al. Defect inspection of solder bumps using the scanning acoustic microscopy and fuzzy SVM algorithm[J]. Microelectronics Reliability, 2016(65):192-197. [37] ZHANG L, UME L, GAMALSKI J, et al. Study of flip chip solder joint cracks under temperature cycling using a laser ultrasound inspection system[J]. IEEE Transactions on Components and Packaging Technologies, 2009, 32(1):120-126. [38] ERDAHL D, ALLEN M, UME I, et al. Structural modal analysis for detecting open solder bumps on flip chips[J]. IEEE Transactions on Advanced Packaging, 2008, 31(1):118-126. [39] LIU S, UME I. Vibration analysis based modeling and defect recognition for flip-chip solder-joint inspection[J]. Journal of Electronic Packaging, 2002, 124(3):221-226. [40] LI K, WANG L, WU J, et al. Using GA-SVM for defect inspection of flip chips based on vibration signals[J]. Microelectronics Reliability, 2018(81):159-166. [41] WU H, GAO W, XU X. Solder joint recognition using mask R-CNN method[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2020, 10(3):525-530. [42] ZHOU J, XIAO X, EN Y, et al, Thermo-mechanical fatigue reliability optimization of PBGA solder joints based on ANN-PSO[J]. Journal of Central South University of Technology, 2008, 15(5):689-693. [43] YUAN C, FAN X, ZHANG G. Solder joint reliability risk estimation by AI-assisted simulation framework with genetic algorithm to optimize the initial parameters for AI models[J]. Materials, 2021, 14(7):4835-4844. [44] SAMAVATIAN V, FOTUHI-FIRUZABAD M. Correlation-driven machine learning for accelerated reliability assessment of solder joints in electronics[J]. Scientific Reports, 2020, 10(1):14821-14830. [45] YUAN C, LEE C. Solder joint reliability modeling by sequential artificial neural network for glass wafer level chip scale package[J]. IEEE Access, 2020(8):143494-143501. [46] KUNWAR A, MALLA P, SUN J, et al. Convolutional neural network model for synchrotron radiation imaging datasets to automatically detect interfacial microstructure:An in situ process monitoring tool during solar PV ribbon fabrication[J]. Solar Energy, 2021(221):230-244. [47] ANIL K, LILI A, LIU J, et al. A data-driven framework to predict the morphology of interfacial Cu6Sn5 IMC in SAC/Cu system during laser soldering[J]. Journal of Materials Science & Technology, 2020(50):115-127. [48] DELE-AFOLABI T, HANIM A, OIOKUPOLUYI J, et al. Interfacial IMC evolution and shear strength of MWCNTs-reinforced Sn-5Sb composite solder joints:Experimental characterization and artificial neural network modelling[J]. Journal of Materials Research and Technology-JMR&T, 2021(13):1020-1031. [49] ANIL K, JOHAN H, SUKEHARU N, et al. Combining multi-phase field simulation with neural network analysis to unravel thermomigration accelerated growth behavior of Cu6Sn5 IMC at cold side Cu-Sn interface[J]. International Journal of Mechanical Sciences, 2020(184):105843. [50] ANIL K, YURI C, JOHAN H, et al. Integration of machine learning with phase field method to model the electromigration induced Cu6Sn5 IMC growth at anode side Cu/Sn interface[J]. Journal of Materials Science & Technology, 2020(59):203-219. [51] MESSINA J, LUO R, XU K, et al. Machine learning to predict aluminum segregation to magnesium grain boundaries[J]. Scripta Materialia, 2021(204):114-150. [52] KOROLEV V, MITROFANOV A, KUCHERINENKO Y, et al. Accelerated modeling of interfacial phases in the Ni-Bi system with machine learning interatomic potential[J]. Scripta Materialia, 2020(186):14-18. |