[1] 赵新刚,谈晓伟,张弼. 柔性下肢外骨骼机器人研究进展及关键技术分析[J]. 机器人,2020,42(3):111-130. ZHAO Xingang,TAN Xiaowei,ZHANG Bi. Development of soft lower extremity exoskeleton and its key technologies:A survey[J]. Robot,2020,42(3):365-384. [2] KIM J,LEE G,HEIMGRATNER R,et al. Reducing the metabolic rate of walking and running with a versatile,portable Exosuit[J]. Science,2019,365(6454):668-672. [3] PARK J,PARK H,KIM J. Performance estimation of the lower limb exoskeleton for plantarflexion using surface Electromyography (sEMG) signals[J]. Journal of Biomechanical Science and Engineering,2017,12(2):1-9. [4] 李剑锋,李国通,张雷雨,等. 穿戴式柔性下肢助力机器人发展现状及关键技术分析[J]. 自动化学报,2020,46(3):427-438. LI Jianfeng,LI Guotong,ZHANG Leiyu,et al. Advances and key techniques of soft wearable lower limb power-assisted robots[J]. Acta Automatica Sinica,2020,46(3):427-438. [5] SCHMIDT K,DUARTE J E,GRIMMER M. The Myosuit:Bi-articular anti-gravity Exosuit that reduces hip extensor activity in sitting transfers[J]. Frontiers in Neurorobotics,2017,11(57):1-16. [6] TIAN M,WANG X,WANG J,et al. Design of a lower limb exoskeleton driven by tendon-sheath artificial muscle[C]//2019 IEEE International conference on robotics and biomimetics (ROBIO),Piscataway:IEEE,2019:91-96. [7] TU X,HUANG J,HE J. Leg hybrid rehabilitation based on hip-knee exoskeleton and ankle motion induced by FES[C]//2016 International conference on Advanced Robotics and Mechatronics (ICARM),Piscataway:IEEE,2016:237-242. [8] DING Y,GALIANA I,ASBECK A T,et al. Biomechanical and physiological evaluation of multi-joint assistance with soft Exosuits[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering,2017,25(2):119-130. [9] AWAD L N,BAE J,O'DONNELL K,et al. A soft robotic Exosuit improves walking in patients after stroke[J]. Science Translational Medicine,2017,9(400):eaai9084. [10] DING Y,KIM M,KUINDERSMA S,et al. Human-in-the-loop optimization of hip assistance with a soft Exosuit during walking[J]. Science Robotics,2018,3(15):eaai5438. [11] HASHIMOTO Y,NAKANISHI Y,SAGA N,et al. Development of gait assistive device using pneumatic artificial muscle[C]//2016 Joint 8th International Conference on Soft Computing and Intelligent Systems (SCIS) and 17th International Symposium on Advanced Intelligent Systems (ISIS),Piscataway:IEEE,2016:710-713. [12] 刘王智懿,郑银环,孙健铨,等. 轻量型柔性下肢助力外骨骼的设计及性能实验[J]. 机器人,2021(4):433-442. LIUWANG Zhiyi,ZHEN Yinhuan,SUN Jianquan,et al. Design and performance experiment of a lightweight flexible lower-limb exoskeleton[J]. Robot,2021(4):433-442. [13] JIN S,IWAMOTO N,HASHIMOTO K,et al. Experimental evaluation of energy efficiency for a soft wearable robotic suit[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2017,25(8):1192-1201. [14] JOHN S W,MURAKAMI K,KOMATSU M,et al. Cross-wire assist suit concept for mobile and lightweight multiple degree of freedom hip assistance[C]//2017 International Conference on Rehabilitation Robotics (ICORR),Piscataway:IEEE,2017:387-393. [15] SCHACHE A G,BLANCH P D,DORN T W,et al. Effect of running speed on lower limb joint kinetics[J]. Medicine & Science in Sports & Exercise,2011,43(7):1260-1271. [16] DEMBIA C L,SILDER A,UCHIDA T K,et al. Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads[J]. PLOS ONE,2017,12(7):e0180320. [17] QUINLIVAN B T,LEE S,MALCOLM P,et al. Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit[J]. Science Robotics,2017,2(2):eaah4416. [18] TAKAHASHI K Z,LEWEK M D,SAWICKI G S. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke:a feasibility study[J]. Journal of NeuroEngineering and Rehabilitation,2015,12(1):1-13. [19] 王文东,肖孟涵,孔德智,等. 基于人机耦合模型的上肢康复外骨骼闭环PD迭代控制方法[J]. 机械工程学报,2021,57(21):11-21. WANG Wendong,XIAO Menghan,KONG Dezhi,et al. Closed-loop PD iterative control method for upper limb rehabilitation exoskeleton based on human-robot coupling model[J]. Journal of Mechanical Engineering,2021,57(21):11-21. [20] CHEN Q,GUO S,SUN L,et al. IMU-based optimization control of a soft Exosuit for hip extension and flexion assistance[J]. Journal of Mechanisms and Robotics,2021,13(2):1-29. [21] 万诗龙. 可穿戴下肢柔性外骨骼助力系统设计[D]. 南京:东南大学,2017. WAN Shilong. Design of the power system of wearable and flexible lower-limb exoskeleton[D]. Nanjing:Southeast University,2017. [22] GATE D H. Catheterizing ankle function during stair ascent,descent,and level walking for ankle prosthesis and orthosis design[D]. Boston:Boston University,2004. [23] 王子帅,傅宏俊,钟智丽. 柔性外骨骼服装面料的性能[J].上海纺织科技,2020,48(11):9-12. WANG Zhishuai,FU Hongjun,ZHONG Zhili. Performance of soft exoskeleton clothing fabric[J]. Shanghai Textile Science & Technology,2020,48(11):9-12. [24] ASBECK A T,ROSSI S M M D,HOLT K G,et al. A biologically inspired soft Exosuit for walking assistance[J]. The International Journal of Robotics Research,2015,34(6):744-762. [25] XILOYANNIS M,CHIARADIA D,FRISOLI A,et al.Physiological and kinematic effects of a soft Exosuit on arm movements[J]. Journal of NeuroEngineering and Rehabilitation,2019,16(29):11-26. [26] 杨景慧,耿喜臣,卫晓阳,等. 下肢蹬力专项训练对模拟空战连续载荷下蹬力耐量及肌肉疲劳的影响[J]. 航天医学与医学工程,2021,34(6):415-420. YANG Jinghui,GEN Xicheng,WEI Xiaoyang,et al. Effects of special training for lower limb pedaling force on pedaling force tolerance and muscle fatigue under continuous load in simulated air combat[J]. Space Medicine & Medical Engineering,2021,34(6):415-420. [27] 董雪芬. 不同强度快速伸膝运动对股四头肌肌电图平均功率频率和输出功率的影响[J]. 浙江师范大学学报,2014,37(4):475-480. DONG Xuefen. The effect of different intensity of fast knee extension exercise on the stock four muscle's MPF and the output power[J]. Journal of Zhejiang Normal University,2014,37(4):475-480. [28] KANKAANP M,TAIMELA S,WEBBER C L,et al. Lumbar paraspinal muscle fatigability in repetitive isoinertial loading:EMG spectral indices,borg scale and endurance time[J]. European Journal of Applied Physiology and Occupational Physiology,1997,76(3):236-242. |