• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (15): 232-246.doi: 10.3901/JME.2023.15.232

• 数字化设计与制造 • 上一篇    下一篇

扫码分享

基于特征聚类的结构件数控加工工时预测方法

刘娟1, 刘检华1,2, 庄存波1,2, 徐磊3, 翟思宽1,2, 高庆霖1   

  1. 1. 北京理工大学机械与车辆学院 北京 100081;
    2. 北京理工大学长三角研究院(嘉兴) 嘉兴 314000;
    3. 北京卫星制造厂有限公司 北京 100094
  • 收稿日期:2022-08-09 修回日期:2023-02-01 出版日期:2023-08-05 发布日期:2023-09-27
  • 通讯作者: 庄存波(通信作者),男,1991年出生,副研究员,硕士研究导师。主要研究方向为装配MES技术、数字孪生技术。E-mail:zhuangdavid@bit.edu.cn
  • 作者简介:刘娟,女,1996年出生。主要研究方向为数字孪生技术及其实现。E-mail:1024396117@qq.com;徐磊,男,1984年出生,副主任/高级工程师。主要研究方向为航天器智能制造技术E-mail:evanxl@163.com,;翟思宽,男,1997出生,硕士研究生。主要研究方向为装配工艺规划、知识图谱。E-mail:1164806656@qq.com
  • 基金资助:
    国家自然科学基金(52005042)、国防基础科研(JCKY2020203B016)和装备预先研究领域基金(80923010101)资助项目

Working-hours Prediction Method of CNC Machining of Structural Parts Based on Feature Clustering

LIU Juan1, LIU Jianhua1,2, ZHUANG Cunbo1,2, XU Lei3, ZHAI Sikuan1,2, GAO Qinglin1   

  1. 1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081;
    2. Yangtze River Delta Research Institute of Beijing Institute of Technology, Jiaxing 314000;
    3. Beijing Satellite Manufacturing Factory, Beijing 100094
  • Received:2022-08-09 Revised:2023-02-01 Online:2023-08-05 Published:2023-09-27

摘要: 针对航天结构件等复杂产品工时定额结果不准确的问题,提出了基于特征聚类的结构件数控加工工时预测方法。基于航天结构件的产品特点、材料特点和加工特点,分析了航天结构件数控加工工时影响因素,并提出了基于BERT模型和K-Means算法的工时影响因素特征向量分析方法。基于K-Means聚类算法对BERT模型提取的工艺特征向量进行分组,在此基础上,基于分组结果建立了不同的遗传算法优化的BP神经网络工时预测模型,进而从工时影响因素特征分析和网络结构优化两方面,提高工时定额的准确性。最后,基于历史工艺数据完成了模型训练和预测,验证了所提方法的有效性。

关键词: 工时预测, 特征聚类, BERT模型, GA_BP算法

Abstract: Aiming at the problem of inaccurate results of working-hours quotas for complex products such as aerospace structural parts, this paper proposes a method for predicting the working-hours of CNC machining of structural parts based on feature clustering. Based on the product characteristics, material characteristics and processing characteristics of aerospace structural parts, the factors influencing the CNC machining working-hours of aerospace structural parts are analyzed, and the feature vector analysis method of working-hours influencing factors based on BERT model and K-Means algorithm is proposed. Based on K-Means clustering algorithm, the process feature vectors extracted from BERT model are grouped, and based on this grouping result, different BP neural network working-hours prediction models optimized by genetic algorithm are established, and then the accuracy of working-hours quotas is improved from both working-hours influencing factor feature analysis and network structure optimization. Finally, the model training and prediction are completed based on the historical process data, and the effectiveness of the proposed method is verified.

Key words: working-hours forecast, feature clustering, BERT model, GA_BP algorithm

中图分类号: