• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (14): 179-189.doi: 10.3901/JME.2023.14.179

• 运载工程 • 上一篇    下一篇

扫码分享

基于车辆动力学的动车组轴箱轴承动态载荷计算方法

杨晨1, 池茂儒1, 吴兴文2, 李奕潇1, 张玉梅3   

  1. 1. 西南交通大学牵引动力国家重点实验室 成都 610031;
    2. 西南交通大学机械工程学院 成都 610031;
    3. 舍弗勒西南交通大学先进技术研究中心 成都 610031
  • 收稿日期:2022-01-15 修回日期:2022-11-20 出版日期:2023-07-20 发布日期:2023-08-16
  • 通讯作者: 池茂儒(通信作者),男,1973年出生,博士,研究员,博士研究生导师。主要研究方向为车辆系统动力学。E-mail:cmr2000@163.com
  • 作者简介:杨晨,男,1997年出生。主要研究方向为车辆系统动力学、轴承动力学。E-mail:yangchen2015zz@163.com
  • 基金资助:
    国家重点研发计划(2018YFE0201401-01)、国家自然科学基金(51805450)、中国科协青年托举工程(2019QNRC001)和四川省应用基础研究(2020YJ0075)资助项目。

Dynamic Load Calculation Method of EMU Axle Box Bearing Based on Vehicle Dynamics

YANG Chen1, CHI Maoru1, WU Xingwen2, LI Yixiao1, ZHANG Yumei3   

  1. 1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031;
    2. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031;
    3. Southwest Jiaotong University Advanced Technology Research Center, Schaeffler, Chengdu 610031
  • Received:2022-01-15 Revised:2022-11-20 Online:2023-07-20 Published:2023-08-16

摘要: 轴箱轴承动态载荷计算结果的准确性对轴承寿命评估具有重要意义。考虑轴承的时变刚度特性,建立某型高速动车组的轴承-车辆-轨道-结构刚柔耦合动力学模型;研究该模型与传统旋转铰车辆动力学模型的轴承动态载荷计算结果的差异,进一步分析轴承刚度与载荷之间的相关性以及动态刚度的分布特征。结果表明,在典型轨道不平顺激扰下,耦合模型与旋转铰模型的轴承边界载荷计算结果基本一致;在实测车轮不平顺激扰下,相比旋转铰模型,耦合模型计算的轴承纵向、横向和摇头载荷幅值整体上偏小,垂向和侧滚载荷幅值整体上偏大,且差异主要集中在100 Hz以上的部分;轴承的垂向刚度与垂向载荷之间具有显著的线性相关性;从动态刚度统计的角度,分别给出轴承的纵向、横向、垂向、侧滚和摇头等效刚度,为4 790 MN/m、58.8 MN/m、4 960 MN/m、3.44 MN·m/rad、18.2 MN·m/rad,可用于完善传统车辆动力学中的轴承建模。所提轴承载荷计算方法可为轴承寿命评估提供载荷参考依据。

关键词: 动车组, 轴箱轴承, 动态载荷, 车辆动力学, 动态刚度

Abstract: The calculation accuracy of dynamic load of axle box bearing have a great significance to bearing life evaluation. Considering the time-varying stiffness characteristics of the bearing, the bearing-vehicle-track-structure rigid-flexible coupled dynamic model of a typical high-speed EMU is established. The differences in dynamic loads of bearing calculated by bearing-vehicle-track-structure rigid-flexible coupled dynamic model and by traditional vehicle dynamic model with revolute joint are ascertained. Furthermore, the correlation between bearing stiffness and load and the distribution characteristics of dynamic stiffness of bearings are analyzed. The results show that the boundary load of bearing estimated by the coupled model are consistent with that estimated by revolute joint model under the typical track irregularities. In the presence of measured wheel irregularities, compared with the revolute joint model, the amplitudes of longitudinal, lateral and yaw load calculated by the coupled model are smaller, and the vertical and rolling load amplitudes are overall larger, and the differences are mainly concentrated in the part above 100 Hz. Besides, there is a significant correlation between vertical stiffness and vertical load of bearing. From the view of dynamic stiffness statistics, the equivalent stiffness of bearing in longitudinal, lateral, vertical, rolling and yaw direction are given, which are 4 790 MN/m, 58.8 MN/m, 4 960 MN/m, 3.44 MN·m/rad and 18.2 MN·m/rad, respectively, and it can be used for bearing modeling in traditional vehicle dynamics. The calculation method of bearing load can provide loading reference for bearing life evaluation.

Key words: EMU, axle box bearing, dynamic load, vehicle dynamics, dynamic stiffness

中图分类号: