• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (14): 1-9.doi: 10.3901/JME.2023.14.001

• 仪器科学与技术 • 上一篇    下一篇

扫码分享

复杂工况条件下多头注意力双向长短时记忆网络的风电机组缺失数据修复方法研究

余晓霞1, 汤宝平1, 王伟影2, 吴宣勇1, 李彪1   

  1. 1. 重庆大学机械传动国家重点实验室 重庆 400044;
    2. 中船重工龙江广瀚燃气轮机有限公司 哈尔滨 150078
  • 收稿日期:2022-01-25 修回日期:2022-07-18 出版日期:2023-07-20 发布日期:2023-08-16
  • 通讯作者: 汤宝平(通信作者),男,1971年出生,博士,教授,博士研究生导师。主要研究方向为机电装备安全服役与退化趋势、测试计量技术及仪器、无线传感器网络等。E-mail:bptang@cqu.edu.cn
  • 作者简介:余晓霞,男,1993年出生,博士研究生。主要研究方向为旋转机械的健康监测、退化趋势预测以及故障识别等。E-mail:xiaoxiayull@hotmail.com
  • 基金资助:
    国家重点研发计划(2020YFB1709800)和重庆市自然科学重点基金(cstc2019jcyj-zdxmX0026)资助项目。

Repairing Deteriorated Data of Wind Turbines by Multi-head Attention Bi-directional Long Short Time Memory Networks under Complex Working Conditions

YU Xiaoxia1, TANG Baoping1, WANG Weiying2, WU Xuanyong1, LI Biao1   

  1. 1. The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044;
    2. CSSC Longjiang Guanghan Gas Turbine Co., Ltd., Harbin 150078
  • Received:2022-01-25 Revised:2022-07-18 Online:2023-07-20 Published:2023-08-16

摘要: 针对变速变载条件下风电机组监测参量中包含大量缺失数据导致基于深度学习的状态监测模型预警精度低的难题,提出一种多头注意力双向长短时记忆网络缺失数据修复方法(Multi-headed attention bidirectional long and short term memory network, MA-BiLSTM)。所提方法利用多头注意力机制抑制复杂工况条件下变速变载对神经网络特征提取时的干扰,采用跨层连接残差单元增加模型的特征提取能力,充分学习已有监测数据的隐藏特征以及多源参量间的关联关系;采用双向长短时记忆网络同时对风电机组监测数据的复杂变化规律进行学习,实现监测参量中缺失数据的预测修复。实例应用结果表明所提多头注意力双向长短时记忆网络能够抑制复杂工况条件下的变速变载干扰,实现单变量或多变量中缺失数据的预测修复,有效提升风电机组状态监测精度。

关键词: 风电机组, 缺失数据预测, 多头注意力机制, 双向长短时记忆网络

Abstract: To address the problem of low early warning accuracy of condition monitoring models due to a large number of missing data in wind turbine monitoring parameters under variable speed and variable load, multi-headed attention bidirectional long and short-term memory networks (MA-BiLSTM) is proposed for repair those data. The multi-headed attention machine is used to suppress the interference of variable loads on the neural network feature extraction under complex working conditions. In addition, the model feature extraction ability is increased by constructing a cross-layer of residual units, and the hidden features of existing monitoring data and the correlation between multi-source parameters are fully learned. The Bi-LSTM cells are used to simultaneously learn the law of the monitoring data of wind turbines to achieve the prediction and repair of incomplete data. The application results show that the proposed MA-BiLSTM networks can suppress the multivariate load disturbance under complex working conditions and realize the repair of incomplete data for improving fault detection accuracy of wind turbines.

Key words: wind turbine, deteriorated data repair, multi-headed attention mechanism, bi-directional long and short term memory network

中图分类号: