• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (23): 196-207.doi: 10.3901/JME.2022.23.196

• 数字化设计与制造 • 上一篇    下一篇

扫码分享

基于运行规律和TICC算法的风电SCADA高维时序数据聚类方法

肖钊1, 邓杰文1, 刘晓明2, 段书用2, 许守亮3   

  1. 1. 湖南科技大学机电工程学院 湘潭 411201;
    2. 省部共建电工装备可靠性与智能化国家重点实验室(河北工业大学) 天津 300401;
    3. 华电郑州机械设计研究院有限公司 郑州 450046
  • 收稿日期:2022-03-07 修回日期:2022-10-10 出版日期:2022-12-05 发布日期:2023-02-08
  • 通讯作者: 刘晓明(通信作者),女,1968年出生,博士,教授,博士研究生导师。主要研究方向为智能电器、现代电力设备可靠性与智能化。E-mail:liuxiaoming@hebut.edu.cn
  • 作者简介:肖钊,男,1987年出生,博士,副教授,硕士研究生导师。主要研究方向为风电大数据挖掘和结构可靠性优化设计。E-mail:xnxzh501@hnust.edu.cn
  • 基金资助:
    国家自然科学基金(51905165,51875199)、河北省自然科学基金创新群体项目(E2020202142)和国家重点研发计划“国家质量基础设施体系”专项(2022YFF0608702)。

Clustering Method of High-dimensional Time Series SCADA Data from Wind Turbines Based on Operational Laws and TICC Algorithm

XIAO Zhao1, DENG Jiewen1, LIU Xiaoming2, DUAN Shuyong2, XU Shouliang3   

  1. 1. School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan 411201;
    2. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401;
    3. Huadian Zhengzhou Mechanical Design Institute Co., Ltd., Zhengzhou 450046
  • Received:2022-03-07 Revised:2022-10-10 Online:2022-12-05 Published:2023-02-08

摘要: 针对大型风力发电机组高维SCADA时序数据的工况识别问题,结合风电机组运行规律和TICC算法,提出一种自动分割聚类方法。从高维的SCADA数据中选取风速、转速和桨距角等少量特定参数作为初始分割聚类对象,分析特定参数的运行规律,确定风电机组理论的运行工况。选取一段特定参数的历史数据,利用TICC算法进行离线聚类分割,获得聚类的最优特征参数。将最优特征参数作为TICC算法的输入,对新的特定参数时间序列数据进行分类。最后根据特定参数时间序列的聚类结果,对未进行分割的SCADA时序数据进行聚类处理。选取某2.5 MW双馈风电机组的SCADA时间序列数据对方法进行验证,同时将所提出的方法与FCM算法、GMM算法、K-Means算法进行对比研究。实例验证和对比研究表明,所提的聚类方法充分融合理论知识和TICC算法的优点,可高效处理高维SCADA聚类分割问题,同时保证聚类结果与理论分析结果一致性。

关键词: 风电机组, SCADA数据, TICC算法, 时间序列聚类

Abstract: Aiming at the working condition identification of high-dimensional SCADA time series data from wind turbines, a new time series clustering method is proposed by combining the operational laws of wind turbines and the TICC algorithm. A small set of key parameters such as wind velocity, rotational speed and pitch angle are selected from the high-dimensional SCADA data as the cluster datasets. The repeated patterns in temporal data of the key parameters and the theoretical operational conditions of wind turbines are analyzed. Some historical data of key parameters are used to obtain the optimal feature parameters by the TICC algorithm. The optimal feature parameters are then taken as the input of the TICC algorithm which clusters new time series data of the key parameters. Finally, the SCADA time series data of non-key parameters are segmented and clustered based on the clustering results of the key parameters. The SCADA data of 2.5 MW doubly-fed induction generator wind turbine are used to validate the present method. Performance comparison of TICC algorithm, FCM algorithm, GMM algorithm and K-Means algorithm with respect to SCADA data cluster are analyzed. The validation example and comparative study show that the proposed method takes full advantage of the theoretical knowledge and the TICC algorithm. It can efficiently segment and cluster high-dimensional time series SCADA data while the clustering results are consistent with the theoretical results.

Key words: wind turbine, SCADA data, TICC algorithm, time series clustering

中图分类号: